Exam Measure and Probability (157040) Monday, 19 January 2009, 9.00 - 12.00 a.m.

This exam consists of 8 problems

- 1. Let Ω be a non-empty set.
 - a. Define what is meant by a σ -field of subsets of Ω .
 - b. Let \mathcal{F} be a σ -field of subsets of Ω and let $B \subseteq \Omega$. Show that $\mathcal{G} = \{A \in \mathcal{F} : A \subseteq B \text{ or } B^c \subseteq A\}$ is a σ -field.
 - c. Let $f : \Omega \to \mathbb{R}$ be a function and let \mathcal{F} be a σ -field. What does it mean to say that f is \mathcal{F} -measurable.
- 2. Let Ω be a set, \mathcal{F} a σ -field of subsets of Ω , and $\mu : \mathcal{F} \to [0, \infty]$ a function.
 - a. Under which conditions on μ do we call $(\Omega, \mathcal{F}, \mu)$ a measure space?
 - b. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Show that $\mu(\bigcup_{n=1}^{\infty} A_n) \leq \sum_{n=1}^{\infty} \mu(A_n)$ for any sequence of sets $A_n \in \mathcal{F}$. Show by examples that the inequality may be strict or that it may be the equality.
- 3. Two players (A and B) play the following game. Each player rolls a fair die and they write down the result: say A rolls n_A and B rolls n_B . If n_A is even, A pays B $\in n_B$; if n_A is odd, B pays A $\in n_A$ (we think of A paying B a negative amount). Describe a probability space modelling this game, on which the amount that A pays B is a random variable X. Find the expectation of X.
- 4. Consider the measure space $(\mathbb{R}, \mathcal{M}, m)$ and let $E \in \mathcal{M}$. Let $f : E \to \mathbb{R}$ be a nonnegative measurable function, and $\{s_n\}_{n\geq 1}$ a sequence of nonnegative, simple functions that *decreases* monotonically to f on E pointwise.
 - a. State the monotone convergence theorem.
 - b. Show, by using the monotone convergence theorem, that

$$\lim_{n \to \infty} \int s_n dm = \int f dm.$$

- 5. Consider the measure space $(\mathbb{R}, \mathcal{M}, m)$.
 - a. State the *dominated convergence theorem*.
 - b. Evaluate

$$\lim_{n \to \infty} \int_0^1 e^{-nx^2} dx.$$

6. Let X and Y be two random variables defined on the probability space (Ω, \mathcal{F}, P) with joint density

$$f_{X,Y}(x,y) = \mathbf{1}_A(x,y), \quad (x,y) \in \mathbb{R}^2,$$

where A is the triangle with corners at (0,2), (1,0) and (1,2).

- a. Find P(X > Y).
- b. Find the conditional density $f_{X|Y}(x|Y=y)$ of X given Y=y.
- c. Determine E(X|Y).
- 7. Let (Ω, F) be a measurable space and let μ and ν be finite measures on (Ω, F).
 a. What is meant by ν ≪ μ (ν is absolutely continuous with respect to μ)?
 - b. What does the *Radon-Nikodym Theorem* say about the relation between μ and ν if $\nu \ll \mu$?
 - c. Give the Radon-Nikodym derivative $\frac{d\nu}{d\mu}$ if $\nu \ll \mu$ and Ω is finite.
- 8. Consider a sequence of functions $f_n(x) = n^2 e^{-n|x|}$, $x \in \mathbb{R}$, and let f(x) = 0, $x \in \mathbb{R}$. Does f_n converge to f
 - a. uniformly on \mathbb{R} ?
 - b. pointwise?
 - c. almost everywhere?
 - d. in L^p -norm $(p \ge 1)$?

points:	1	2	3	4	5	6	7	8
	5	4	3	3	3	3	5	4

mark: $\frac{\text{total}}{30} \times 9 + 1 \text{ (rounded)}$