Kenmerk: EWI/TW/SP/12-001 Datum: 16 januari 2012 ## Exam Measure and Probability (191570401) Monday 23 January 2012, 8.45 - 11.45 a.m. ## This exam consists of 7 problems - 1. Let Ω be a set, \mathcal{F} a collection of subsets of Ω and $\mu:\mathcal{F}\to\mathbb{R}$. When do we call - a. \mathcal{F} a σ -field? - b. μ an outer measure? - c. μ a measure? - d. $(\Omega, \mathcal{F}, \mu)$ a probability space? - 2. Consider the measure space $((0,1), \mathcal{M}_{(0,1)}, m_{(0,1)})$. - a. Define what is meant by saying that $f:(0,1)\to\mathbb{R}$ is measurable. - b. Define what is meant by saying that $f:(0,1)\to\mathbb{R}$ is integrable. A measurable function $f:(0,1)\to\mathbb{R}$ is said to be *mean-square integrable* if $\int_{(0,1)}f^2dm<\infty$. c. Show that every mean-square integrable function is integrable. (Hint: Separate the cases $|f| \geq 1$ and |f| < 1.) - 3. Consider the measure space $(\mathbb{R}, \mathcal{M}, m)$. - a. State the monotone convergence theorem. - b. (Borel-Cantelli lemma) Suppose $\{E_k\}$ is a sequence of measurable sets satisfying $$\sum_{k=1}^{\infty} m(E_k) < \infty.$$ Show that m(F)=0 when $F=\{x: x \text{ belongs to infinitely many sets } E_k\}$. (Hint: Define $f_n=\sum_{k=1}^n\mathbb{I}_{E_k}, f=\lim_{n\to\infty}f_n$, and show that $\int_{\mathbb{R}}fdm<\infty$.) - 4. Consider the measure space $(\mathbb{R}, \mathcal{M}, m)$. - a. State the dominated convergence theorem. - b. Evaluate $$\lim_{n\to\infty}\int_0^\infty \left(1+\frac{x}{n}\right)^{-n}\sin\left(\frac{x}{n}\right)dx.$$ (Hint: Recall that $(1+x/n)^n$ increases to e^x as $n\to\infty$.) - 5. Consider the (Lebesgue) measurable function $f: \mathbb{R}^2 \to \mathbb{R}$. - a. What does Fubini's theorem tell us about $\iint_{\mathbb{R}^2} f dm_2$? - b. Show that if f is the joint density function of the absolutely continuous random variables X and Y, then X and Y are independent if and only if $$f(x,y) = f_X(x)f_Y(y)$$ a.e. 6. Consider the interval [-1,1] with Lebesgue measure $m_{[-1,1]}$. and let ν be a measure on the measurable space $([-1,1],\mathcal{B}_{[-1,1]})$ such that $$\nu([-1,x]) = \begin{cases} 0 & \text{if } -1 \le x < 0 \\ 1 + x^2 & \text{if } 0 \le x \le 1. \end{cases}$$ - a. Show that ν is not absolutely continuous with respect to $m_{[-1,1]}$. - b. Give the Lebesgue decomposition of ν with respect to $m_{[-1,1]}$, that is, determine ν_a and ν_s such that $\nu = \nu_a + \nu_s$, $\nu_a \ll m_{[-1,1]}$ and $\nu_s \perp m_{[-1,1]}$. - c. Determine the Radon-Nikodym derivative of ν_a with respect to $m_{[-1,1]}$. - 7. Consider the probability space $([0,1],\mathcal{M}_{[0,1]},m_{[0,1]})$ and, for $n=1,2,\ldots$, set $$X_n(\omega) = \begin{cases} \frac{n}{\log n} & \text{if } 0 \le \omega < \frac{1}{n} \\ 0 & \text{if } \frac{1}{n} \le \omega \le 1. \end{cases}$$ - a. Find the distribution function $F_n(x)$ of X_n and $\mathbb{E}(X_n)$. - b. Which of the following statements are true? (Justify your answers). - (i) $X_n \to 0$ in probability. - (ii) $X_n \to 0$ almost surely. - (iii) $X_n \to 0$ pointwise. - (iv) $X_n \to 0$ in L^1 -norm. - (v) $X_n \to 0$ in L^2 -norm. Normering: | 1 | | | | 2 | | | 3 | | 4 | | 5 | | 6 | | | 7 | | Σ | |---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----| | а | b | С | d | а | b | С | а | b | а | b | a | b | а | b | С | а | b | | | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 29 | Mark: $\frac{\text{Total}}{29} \times 9 + 1$ (rounded)