Exam Measure and Probability (191570401) Monday 20 January 2014, 8.45 - 11.45 p.m.

This exam consists of 7 problems

- 1. Let Ω be a set, \mathcal{F} a collection of subsets of Ω , and μ : $\mathcal{F} \to [0, \infty)$. When do we call
 - a. \mathcal{F} a σ -field?
 - b. μ an outer measure?
 - c. μ a measure?

Suppose \mathcal{F} is a σ -field and μ a *finitely-additive* set function, that is, a function such that $\mu(A \cup B) = \mu(A) + \mu(B)$ whenever A and B are disjoint sets in \mathcal{F} . Also suppose μ has the following property: If $E_1 \supset E_2 \supset E_3 \supset \ldots$ are sets in \mathcal{F} such that $\cap_i E_i = \emptyset$, then $\lim_{i \to \infty} \mu(E_i) = 0$.

- d. Prove that μ is a measure on (Ω, \mathcal{F}) .
- 2. Consider the measure space $((0, 1), \mathcal{M}_{(0,1)}, m_{(0,1)})$.
 - a. What is meant by saying that $f:(0,1) \to \mathbb{R}$ is measurable?
 - b. What is meant by saying that $f: (0,1) \to \mathbb{R}$ is integrable?

A measurable function $f : (0,1) \to \mathbb{R}$ is said to be *mean-square integrable* if $\int_{(0,1)} f^2 dm < \infty$.

- c. Show that every mean-square integrable function is integrable.
- 3. Consider the measure space $(\mathbb{R}, \mathcal{M}, m)$.
 - a. State the monotone convergence theorem.
 - b. (*Borel-Cantelli Lemma*) Suppose $\{E_k\}$ is a sequence of measurable sets satisfying

$$\sum_{k=1}^{\infty} m(E_k) < \infty.$$

Show that m(F) = 0 when $F = \{x : x \text{ belongs to infinitely many sets } E_k\}$. (Hint: Define $f_n = \sum_{k=1}^n \mathbb{I}_{E_k}, f = \lim_{n \to \infty} f_n$, and show that $\int_{\mathbb{R}} f dm < \infty$.)

- 4. Consider the measure space $(\mathbb{R}, \mathcal{M}, m)$.
 - a. State the *dominated* convergence theorem.
 - $\lim_{n \to \infty} \int_0^1 \frac{1 + nx^2}{(1 + x^2)^n} dx.$ b. Evaluate
- 5. Consider the (Lebesgue) measurable function $f : \mathbb{R}^2 \to \mathbb{R}$.
 - a. What does *Fubini's theorem* tell us about $\int_{\mathbb{R}^2} f dm_2$?
 - b. Show that if f is the joint density function of the absolutely continuous random variables X and Y, then X and Y are independent if and only if

$$f(x,y) = f_X(x)f_Y(y)$$
 a.e

- 6. Let μ_i , i = 1, 2, 3 be finite measures on a measurable space (Ω, \mathcal{F}) .
 - a. What is meant by $\mu_1 \ll \mu_2$ (μ_1 is absolutely continuous with respect to μ_2)?
 - b. What does the Radon-Nikodym Theorem say about the relation between μ_1 and μ_2 if $\mu_1 \ll \mu_2$?
 - c. Let $\mu_1 = \delta_0 + \delta_1, \mu_2 = m_{[0,1]}$ and $\mu_3 = \mu_1 + \mu_2$. For which $i \neq j$ do we have $\mu_i \ll \mu_j$? Find the *Radon-Nikodym derivative* in each such case.
- 7. Consider the probability space $([0,1], \mathcal{M}_{[0,1]}, m_{[0,1]})$ and set

$$X_n(\omega) = \max\left\{n - n^2 |\omega - \frac{1}{n}|, 0\right\}, \quad n = 1, 2, \dots$$

- a. Does X_n converge to 0 uniformly? Pointwise?
- b. Does X_n converge to 0 almost surely? In probability?
- c. Does X_n converge to 0 in L^1 -norm?

Motivate your answers.

1				2			3		4		5		6			7			Σ
а	b	С	d	а	b	С	а	b	а	b	а	b	а	b	с	а	b	с	
2	2	2	3	1	(1)	2	2	3	2	2	2	3	1	2	2)	2)36
Ma	Mark. Total $\times 0 + 1$ (rounded)																		

Mark: $\frac{\text{Total}}{36} \times 9 + 1$ (rounded)

EvD 10-01-2014