Exam Optimization Modeling (191581420)

Thursday, April 18, 2019, 8:45 – 11:45

- Use of calculators, mobile phones, etc. is not allowed!
- This exam consists of four problems. Start a new page for every problem.
- Total number of points: 30. The distribution of points is according to the following table.

1a: 2	2: 8	3: 8	4a: 2
1b: 2			4b: 4
1c: 2			
1d: 2			

1. Modeling Tricks

- (a) (2 points) Assume that you are given parameters $a_1, \ldots, a_k \in \mathbb{R}$, an integer variable $x \in \{1, \ldots, k\}$, and an unrestricted variable y.

 Model the constraint $y = a_x$.
- (b) (2 points) You are given two constraints $a_1x \leq b_1$ and $a_2x \leq b_2$ with $a_1, a_2 \in \mathbb{Z}^d$, $b_1, b_2 \in \mathbb{Z}$, and $x \in \mathbb{Z}^d$ is a vector of binary variables. Model the "exclusive or" of these two constraints, i.e., the following constraint: Either $(a_1x \leq b_1 \text{ and } a_2x > b_2)$ or $(a_1x > b_1 \text{ and } a_2x \leq b_2)$.
- (c) (2 points) Given an integer variable $x \in \{2, ..., M\}$ for some large $M \in \mathbb{N}$, model the following constraint: "The value of x is not a prime number."
- (d) (2 points) Model the constraint " $x \neq y$ " for two integer variables x, y with range $\{0, \ldots, M\}$ using linear constraints (you are allowed to use additional variables).

2. Correlation Clustering

(8 points) We want to cluster a set X of points in a very particular way. We have a similarity measure s that measures how similar two points are: $s(x,y) = s(y,x) \in \mathbb{R}$ for all $x,y \in \mathbb{R}$. Note that both positive and negative values are allowed.

Our goal is to find a clustering, i.e., a partitioning of X into k sets C_1, \ldots, C_k that maximizes that sum of pairwise similarity of all points in the same cluster, summed over all clusters. Note that the number k of clusters is not given or fixed, but arbitrary.

Example: If s(x,y) = -1 for all $x,y \in X$, then an optimal clustering consists of |X| singleton clusters. If s(x,y) = 1 for all $x,y \in X$, then an optimal clustering consists of a single cluster that contains all points.

To avoid clusters that are too small, we are also given a number $\ell \in \mathbb{N}$. Only clusterings with $|C_i| \geq \ell$ for all $i \in \{1, \ldots, k\}$ are allowed. (This is not taken into account in the example above.)

Model this problem as an integer linear program.

3. Vehicle Routing with Precedence Constraints

 $(8 \ points)$ We are given k service cars, all located at a central depot. These service cars have to visit a set of clients. In order to build a schedule for the service cars, you have to take into account the following issues:

- Each client is visited by exactly one service car.
- There are precedence constraints between certain clients of the form "client i must be visited before client j". This does not mean that i must be visited directly before j, but both have to be visited by the same car, and this car has to visit i at some point in time and j at some later point in time.
- The service cars all return to the depot after their tours.
- Travel times between any pair of clients and to/from the depot are known.
- The goal is that the latest service car returns to the depot as early as possible.
- All cars are used.

Model this problem as an integer linear program.

4. Miscellaneous Questions

(a) (2 points) Prove or disprove the following statement: For every matrix $A \in \mathbb{Z}^{n \times d}$ with rank(A) = n, there exists a vector $b \in \mathbb{Z}^n$ with $b \neq 0$ such that the LP

minimize
$$c^{\mathrm{T}}x$$

subject to $Ax = b$,
 $x \ge 0$

has only integral basic feasible solutions.

Hint: Cramer's rule.

(b) (4 points) To model the TSP, let G = (V, E) be an undirected, complete graph with |V| = n. We have binary variables x_e for $e \in E$ together with the degree constraint

$$\sum_{u \in V \setminus \{v\}} x_{\{u,v\}} = 2 \quad \text{for all } v \in V.$$

To avoid subtours, we are given two alternatives:

(i) For all cycles $v_0, v_1, v_2, \ldots, v_k = v_0$ with $k \in \{3, 4, \ldots, n-2\}$, we require

$$\sum_{i=0}^{k-1} x_{\{v_i, v_{i+1}\}} \le k - 1.$$

(ii) For all subsets $S \subseteq V$ with $\emptyset \neq S \neq V$, we require

$$\sum_{e \in \delta(S)} x_e \ge 2.$$

Prove that these two constraints are equivalent: Every integer solution satisfies either none of them or both.