Exam Queueing Theory

Tuesday, May 31, 2016, 13.30-16.30.

1. Jobs arrive at a rate of $\lambda=8$ jobs per hour and jobs are processed at rate $\mu=14$ jobs per hour. So $\rho=\frac{\lambda}{\mu}=\frac{4}{7}$.
a) $\quad E(S)=\frac{\frac{1}{\mu}}{1-\rho}=\frac{\frac{1}{14}}{1-\frac{4}{7}}=\frac{1}{6}=0.167$ hours.
b) $\quad P(S>t)=e^{-\mu(1-\rho) t}$,
and thus

$$
P\left(S>\frac{2}{\mu(1-\rho)}\right)=e^{-2}=0.135
$$

c)

$$
\begin{aligned}
p_{0} 8 & =p_{1, f} 14+p_{1, s} 2 \\
p_{1, f} 22 & =p_{0} 8+p_{2} 2 \\
p_{1, s} 10 & =p_{2} 14 \\
p_{2} 24 & =p_{1, f} 8+p_{1, s} 8+p_{3} 16 \\
p_{n} 24 & =p_{n-1} 8+p_{n+1} 16, \quad n \geq 3
\end{aligned}
$$

d) $\quad E(L)=\left(p_{1, f}+p_{1, s}\right)+\sum_{n=2}^{\infty} n p_{n}=\frac{10}{27}+\sum_{n=2}^{\infty} n \frac{5}{27}\left(\frac{1}{2}\right)^{n-2}=\frac{40}{27}$
and thus with Little,

$$
E(S)=\frac{E(L)}{\lambda}=\frac{5}{27}>\frac{1}{6}
$$

2. Customer orders arrive at a rate of $\lambda=\frac{1}{4}$ orders per hour. The production of a product is $B=E+1$ hours, where E is exponentially distributed with a mean of 2 hours. So $\rho=\lambda E(B)=\frac{1}{4} \cdot 3=\frac{3}{4}$.
a) For $0 \leq t<1$,

$$
F_{B}(t)=P(B \leq t)=0
$$

and for $t \geq 1$,

$$
F_{B}(t)=P(E+1 \leq t)=P(E \leq t-1)=1-e^{-\frac{1}{2}(t-1)}
$$

For the Laplace-Stieltjes transform we have

$$
\widetilde{B}(s)=E\left(e^{-s B}\right)=E\left(e^{-s(E+1)}\right)=e^{-s} E\left(e^{-s E}\right)=\frac{e^{-s}}{1+2 s}
$$

b) For $t \geq 0$,

$$
f_{R}(t)=\frac{1-F_{B}(t)}{E(B)}=\frac{1-F_{B}(t)}{3}
$$

Hence, for $0 \leq t<1$

$$
f_{R}(t)=\frac{1}{3}
$$

and for $t \geq 1$,

$$
f_{R}(t)=\frac{1}{3} e^{-\frac{1}{2}(t-1)}=\frac{2}{3} \cdot \frac{1}{2} e^{-\frac{1}{2}(t-1)}
$$

For the Laplace-Stieltjes transform we get

$$
\widetilde{R}(s)=\frac{1-\widetilde{B}(s)}{s E(B)}=\frac{1-\frac{e^{-s}}{1+2 s}}{3 s}=\frac{1+2 s-e^{-s}}{3 s(1+2 s)}
$$

c)

$$
\widetilde{W}(s)=\frac{1-\rho}{1-\rho \widetilde{R}(s)}=\frac{\frac{1}{4}}{1-\frac{3}{4} \frac{1+2 s-e^{-s}}{3 s(1+2 s)}}=\frac{s(1+2 s)}{(4 s-1)(1+2 s)+e^{-s}}
$$

d) Note that $E(R)=\frac{1}{3} \cdot \frac{1}{2}+\frac{2}{3} \cdot 3=2 \frac{1}{6}$, so

$$
E(W)=\frac{\rho E(R)}{1-\rho}=\frac{13}{2}=6 \frac{1}{2} \text { hours. }
$$

3. a) $\lambda<2 \mu$.
b) The (global) balance equations for the set $\{0,1, \ldots, n\}$ are

$$
p_{n} \lambda=\left(p_{n+1}+p_{n+2}\right) \mu, \quad n \geq 0
$$

For $\lambda=10$ and $\mu=9$ and substituting $p_{n}=C x^{n}$ we get

$$
10 C x^{n}=9 C x^{n+1}(1+x)
$$

and then dividing by $C x^{n}$,

$$
10=9 x(1+x)
$$

This equation has two roots: $x=-\frac{1}{2} \pm \frac{7}{6}$. Since $|x|<1$, we conclude $x=-\frac{1}{2}+\frac{7}{6}=\frac{2}{3}$. Finally, since $p_{0}+p_{1}+\cdots=1$, it follows that $C=\frac{1}{3}$, so

$$
p_{n}=\frac{1}{3}\left(\frac{2}{3}\right)^{n}, \quad n \geq 0
$$

c) $\quad E(L)=\sum_{n=0}^{\infty} n p_{n}=2$
and thus by Little's law, $E(S)=\frac{E(L)}{\lambda}=\frac{1}{5}$ hours.
d) Let r_{n} be the rate per hour that a nurse picks up n patients. Then, since nurses pick up patients at an exponential rate,

$$
r_{0}=\mu p_{0}=9 \cdot \frac{1}{3}=3, \quad r_{1}=\mu p_{1}=9 \cdot \frac{2}{9}=2, \quad r_{2}=\mu-r_{0}-r_{1}=4
$$

4. Jobs arrive at a rate of $\lambda=\frac{1}{6}$ jobs per minute. The process time of a job is exponential with a mean of 3 minutes with probability $\frac{2}{5}$, and it is the sum of two independent exponentials, each with a mean of 3 minutes, with probability $\frac{3}{5}$. Hence $E(B)=\frac{2}{5} \cdot 3+\frac{3}{5} \cdot 6=\frac{24}{5}$ minutes, and $\rho=\lambda E(B)=\frac{4}{5}$.
a) The mean residual service time $E(R)=\frac{5}{8} \cdot 3+\frac{3}{8} \cdot 6=\frac{33}{8}$ minutes. Hence

$$
E(W)=\frac{\rho E(R)}{1-\rho}=\frac{\frac{4}{5} \cdot \frac{33}{8}}{\frac{1}{5}}=\frac{33}{2},
$$

so $E(S)=E(W)+E(B)=\frac{33}{2}+\frac{24}{5}=21.3$ minutes.
b) Let ρ_{i} denote occupation rate due to jobs with i exponential operations, so $\rho_{1}=$ $\frac{2}{5} \cdot \frac{1}{6} \cdot 3=\frac{1}{5}$ and $\rho_{2}=\frac{3}{5}$. Then

$$
E\left(W_{1}\right)=\frac{\rho E(R)}{1-\rho_{1}}=\frac{\frac{33}{10}}{\frac{4}{5}}=\frac{1}{4} \frac{33}{2}=\frac{33}{8}
$$

and

$$
E\left(W_{2}\right)=\frac{\rho E(R)}{\left(1-\rho_{1}\right)(1-\rho)}=\frac{5}{4} \frac{33}{2}=5 \frac{33}{8}=\frac{165}{8} \text { minutes. }
$$

So $E\left(S_{1}\right)=E\left(W_{1}\right)+3=7 \frac{1}{8}$ minutes and $E\left(S_{2}\right)=E\left(W_{2}\right)+6=26 \frac{5}{8}$ minutes.
c) Let T denote the exponential turn-on time, with a mean of 10 minutes. Then

$$
E(W)=E\left(L^{q}\right) E(B)+\rho E(R)+(1-\rho) E(T)
$$

Note that, if on arrival, the machine is idle or being turned on, the mean (residual) turn-on time is $E(T)$ (due to the memoryless property of exponentials). Hence, with Little's law, $E\left(L^{q}\right)=\lambda E(W)$,

$$
E(W)=\frac{\rho E(R)}{1-\rho}+E(T)=\frac{33}{2}+10=26.5
$$

and $E(S)=E(W)+E(B)=31.3$ minutes.
d) For jobs with 1 exponential operation, we obtain

$$
E\left(W_{1}\right)=E\left(L_{1}^{q}\right) 3+\rho E(R)+(1-\rho) E(T)
$$

and thus, with $E\left(L_{1}^{q}\right)=\lambda_{1} E\left(W_{1}\right)$,

$$
E\left(W_{1}\right)=\frac{\rho E(R)}{1-\rho_{1}}+\frac{1-\rho}{1-\rho_{1}} E(T)=\frac{33}{8}+\frac{1}{4} \cdot 10=6 \frac{5}{8}
$$

so $E\left(S_{1}\right)=E\left(W_{1}\right)+3=9 \frac{5}{8}$ minutes. Similarly

$$
E\left(W_{2}\right)=E\left(L_{1}^{q}\right) 3+E\left(L_{2}^{q}\right) 6+\rho E(R)+(1-\rho) E(T)+\rho_{1} E\left(W_{2}\right),
$$

so with $E\left(L_{2}^{q}\right)=\lambda_{2} E\left(W_{2}\right)$,

$$
E\left(W_{2}\right)=\frac{E\left(L_{1}^{q}\right) 3+\rho E(R)+(1-\rho) E(T)}{1-\rho}=\frac{E\left(W_{1}\right)}{1-\rho}=\frac{265}{8}=33 \frac{1}{8}
$$

so $E\left(S_{2}\right)=E\left(W_{2}\right)+6=39 \frac{1}{8}$ minutes.

Credits:

1 a	b	c	d	2 a	b	c	d	3 a	b	c	d	4 a	b	c	d
2	3	3	2	3	2	3	2	2	3	2	3	2	3	2	3

