Answers Exam Queueing Theory

Monday, May 17, 2010, 13.00-16.00.

1. a) For machine 1 we have $\lambda_{1}=\frac{1}{12}(\mathrm{jobs} / \mathrm{min})$ and $\frac{1}{\mu_{1}}=4(\mathrm{~min})$, so $\rho_{1}=\frac{\lambda_{1}}{\mu_{1}}=\frac{1}{3}$ and

$$
E\left(S_{1}\right)=\frac{\frac{1}{\mu_{1}}}{1-\rho_{1}}=6(\mathrm{~min}) .
$$

Similarly, for machine 2 we have $\lambda_{2}=\frac{1}{12}(\mathrm{job} / \mathrm{min}), \frac{1}{\mu_{2}}=8(\mathrm{~min})$, so $\rho_{2}=\frac{\lambda_{2}}{\mu_{2}}=\frac{2}{3}$ and

$$
E\left(S_{2}\right)=\frac{\frac{1}{\mu_{2}}}{1-\rho_{2}}=24(\mathrm{~min}) .
$$

For the mean production lead time of an arbitrary job we get

$$
E(S)=\frac{1}{2} E\left(S_{1}\right)+\frac{1}{2} E\left(S_{2}\right)=15(\mathrm{~min}) .
$$

b) For a job on machine 1 it holds

$$
P\left(S_{1}>30\right)=e^{-\mu_{1}\left(1-\rho_{1}\right) 30}=e^{-5} \approx 0.0067,
$$

and for a job on machine 2,

$$
P\left(S_{2}>30\right)=e^{-\mu_{2}\left(1-\rho_{2}\right) 30}=e^{-5 / 4} \approx 0.287 .
$$

Hence, for an arbitrary job,

$$
P(S>30)=\frac{1}{2} P\left(S_{1}>30\right)+\frac{1}{2} P\left(S_{2}>30\right)=\frac{1}{2} e^{-5}+\frac{1}{2} e^{-5 / 4} \approx 0.147 .
$$

c) The mean production lead time of an arbitrary job is equal to

$$
\begin{aligned}
E(S(p)) & =\frac{p \frac{1}{\mu_{1}}}{1-p \frac{\lambda}{\mu_{1}}}+\frac{(1-p) \frac{1}{\mu_{2}}}{1-(1-p) \frac{\lambda}{\mu_{2}}} \\
& =\frac{12 p}{3-2 p}+\frac{24-24 p}{4 p-1} \\
& =\frac{18}{3-2 p}+\frac{18}{4 p-1}-12 .
\end{aligned}
$$

The value of p minimizing the mean production lead time satisfies

$$
\frac{d}{d p} E(S(p))=\frac{36}{(3-2 p)^{2}}-\frac{72}{(4 p-1)^{2}}=0
$$

so

$$
\frac{1}{3-2 p}=\frac{\sqrt{2}}{4 p-1},
$$

and hence, the optimal p is given by

$$
p=\frac{1}{4} \cdot \frac{6+\sqrt{2}}{1+\sqrt{2}} \approx 0.768 .
$$

2. a) The problem can be modeled as an $M / G / s / s$ system, where a busy server represents an outstanding order. The number of books on stock is then s minus the number of busy servers. Here we have $s=2, \lambda=1$ (customer/day) and $E(B)=2$ days, so $\rho=\lambda E(B)=2$. The long-run fraction of time p_{i} that there are i outstanding orders is

$$
p_{i}=\frac{\frac{\rho^{i}}{i!}}{\sum_{k=0}^{2} \frac{\rho^{k}}{k!}}=\frac{\frac{2^{i}}{i!}}{1+2+2}=\frac{1}{5} \frac{2^{i}}{i!}, \quad i=0,1,2 .
$$

So $p_{0}=\frac{1}{5}, p_{1}=p_{2}=\frac{2}{5}$. The probability that there is no book on the shelf is $p_{2}=\frac{2}{5}$, that there is 1 book is $p_{1}=\frac{2}{5}$ and that there are 2 books is $p_{0}=\frac{1}{5}$.
b) By PASTA, the long-run fraction of customer demand that is lost is equal to $p_{2}=\frac{2}{5}$.
c) When $s=3$, the long-run fraction of customer demand that is lost is equal to

$$
\frac{\frac{2^{3}}{3!}}{\sum_{k=0}^{3} \frac{\rho^{k}}{k!}}=\frac{\frac{4}{3}}{\frac{19}{3}}=\frac{4}{19}>\frac{1}{10} .
$$

When $s=4$ this fraction is equal to

$$
\frac{\frac{2^{4}}{4!}}{\sum_{k=0}^{4} \frac{\rho^{k}}{k!}}=\frac{\frac{2}{3}}{7}=\frac{2}{21}<\frac{1}{10} .
$$

Hence, the book store should keep at least 4 copies on stock.
3. As time unit we choose 1 second:

$$
\begin{aligned}
& \lambda_{N}=1 / 20, E\left(B_{N}\right)=8, \rho_{N}=2 / 5, E\left(R_{N}\right)=4, \\
& \lambda_{W}=1 / 30, E\left(B_{W}\right)=12, \rho_{W}=2 / 5, E\left(R_{W}\right)=6 . \\
& \lambda=1 / 12, E(B)=3 / 5 \cdot 8+2 / 5 \cdot 12=48 / 5, \rho=4 / 5, E(R)=1 / 2 \cdot 4+1 / 2 \cdot 6=5,
\end{aligned}
$$

a) $E(W)=\frac{\rho}{1-\rho} E(R)=20$ seconds. Hence, $E\left(S_{N}\right)=28$ and $E\left(S_{W}\right)=32$ seconds.
b) $\quad E\left(W_{N}\right)=\frac{\rho_{N} E\left(R_{N}\right)+\rho_{W} E\left(R_{W}\right)}{1-\rho_{N}}=20 / 3=6 \frac{2}{3}$ seconds ,

$$
E\left(W_{W}\right)=\frac{\rho_{N} E\left(R_{N}\right)+\rho_{W} E\left(R_{W}\right)}{\left(1-\rho_{N}\right)\left(1-\rho_{N}-\rho_{W}\right)}=100 / 3=33 \frac{1}{3} \text { seconds },
$$

Hence, $E\left(S_{N}\right)=44 / 3=14 \frac{2}{3}$ seconds and $E\left(S_{W}\right)=136 / 3=45 \frac{1}{3}$ seconds.
c) $E\left(W_{N}\right)=\frac{\rho_{N} E\left(R_{N}\right)+\left(1-\rho_{N}\right) E\left(R_{W}\right)}{1-\rho_{N}}=26 / 3=8 \frac{2}{3}$ seconds ,

Hence, $E\left(S_{N}\right)=50 / 3=16 \frac{2}{3}$ seconds .
d) $\left(1-\rho_{N}\right) \cdot 5=3$ pallets per minute.
4. a) $\quad \widetilde{B}(s)=E\left(e^{-s B}\right)=e^{-2 s} \cdot \frac{1}{1+s}$
b) We have $E(B)=3$ hours. Hence,

$$
\widetilde{R}(s)=\frac{1-\widetilde{B}(s)}{s E(B)}=\frac{1+s-e^{-2 s}}{3 s(1+s)}
$$

c) We have $\lambda=1 / 4$ and $E(B)=3$ hours, so $\rho=\lambda E(B)=3 / 4$. Hence

$$
\widetilde{W}(s)=\frac{1-\rho}{1-\rho \widetilde{R}(s)}=\frac{1}{4-3 \widetilde{R}(s)}=\frac{s(1+s)}{(4 s-1)(1+s)+e^{-2 s}} .
$$

d) Use

$$
E(W)=\frac{\rho}{1-\rho} E(R)=3 E(R)
$$

and

$$
E(R)=\frac{E\left(B^{2}\right)}{2 E(B)}=\frac{5}{3}
$$

to obtain $E(W)=5$ and $E(S)=E(W)+E(B)=8$ hours.
e) Let

$$
\begin{aligned}
p_{i} & =P(\text { customer arrives when machine is idle })=1 / 4 \\
p_{f} & =P(\text { customer arrives when machine works on first phase })=1 / 2 \\
p_{s} & =P(\text { customer arrives when machine works on second phase })=1 / 4
\end{aligned}
$$

Then the mean value equations are given by

$$
\begin{aligned}
& E(L)=\lambda E(S)=E(S) / 4 \\
& E(S)=(E(L)+1) \cdot 3-p_{i} \cdot 2-p_{f} \cdot 1-p_{s} \cdot 2 .
\end{aligned}
$$

This gives $E(S)=6$ hours. Hence, the reduction is 2 hours.

