Answers Exam Queueing Theory

Monday, June 21, 2010, 13.00-16.00.

1. a) We are dealing with an $M / M / c$ queue with $c=4$. As time unit we choose 1 minute: $\lambda=2 / 3, \mu=1 / 3$ and $\rho=1 / 2$. As solution of the balance equations and the normalization equation we obtain

$$
p_{0}=\frac{3}{23}, \quad p_{1}=\frac{6}{23}, \quad p_{2}=\frac{6}{23}, \quad p_{3+n}=\frac{4}{23}\left(\frac{1}{2}\right)^{n}, \quad n \geq 0 .
$$

b) $E(L)=\sum_{n=0}^{\infty} n p_{n}=50 / 23$ and hence $E(S)=E(L) / \lambda=150 / 46 \approx 3.26$ minutes.
c) $P(W>2)=\Pi_{W} \cdot e^{-c \mu(1-\rho) 2}=\frac{4}{23} \cdot e^{-4 / 3} \approx 0.046$.
d) $\mathrm{E}($ crowded period $)=\mathrm{E}($ busy period in $M / M / 1$ queue with $\lambda=2 / 3$ and $\mu=4 / 3)=$ $1 /[\mu(1-\rho)]=1.5$ minutes. The fraction of time that the system is crowded equals $\mathrm{E}($ crowded period $) /[\mathrm{E}($ crowded period $)+\mathrm{E}($ quiet period $)]=4 / 23$. So E (quiet period) $=7 \frac{1}{8}=7.125$ minutes.
2. a) Customers arrive with rate $\lambda=\frac{1}{20}$ (customers/hour) and the service time of a job is exponentially distributed with a mean $\frac{1}{\mu}=6$ (minutes). Two third of the customers have only one job, the remaining one third have two jobs. Hence, $\rho_{1}=\frac{2}{3} \lambda \frac{1}{\mu}=\frac{1}{5}$ is the fraction of time the handyman works on customers with one job, and $\rho_{2}=\frac{1}{3} \lambda \frac{2}{\mu}=\frac{1}{5}$ is the fraction of time the handyman works on customers with two jobs. The mean waiting time of an arbitrary customer is

$$
E(W)=\frac{\rho_{1} \cdot \frac{1}{\mu}+\rho_{2}\left(\frac{1}{2} \cdot \frac{2}{\mu}+\frac{1}{2} \cdot \frac{1}{\mu}\right)}{1-\rho_{1}-\rho_{2}}=5 \text { (minutes) }
$$

and the mean sojourn time of an arbitrary customer is

$$
E(S)=E(W)+\frac{2}{3} \cdot \frac{1}{\mu}+\frac{1}{3} \cdot \frac{2}{\mu}=13 \text { (minutes). }
$$

b) The mean number of waiting customers is

$$
E\left(L^{q}\right)=\lambda E(W)=\frac{1}{4},
$$

and so the mean number of unfinished jobs in the shop of the handyman is

$$
E\left(L^{q}\right) \cdot\left(\frac{2}{3} \cdot 1+\frac{1}{3} \cdot 2\right)+\rho_{1} \cdot 1+\rho_{2} \cdot \frac{3}{2}=\frac{5}{6} .
$$

c) The mean waiting time of a customer with one job equals

$$
E\left(W_{1}\right)=\frac{\rho_{1} \cdot \frac{1}{\mu}+\rho_{2}\left(\frac{1}{2} \cdot \frac{2}{\mu}+\frac{1}{2} \cdot \frac{1}{\mu}\right)}{1-\rho_{1}}=\frac{15}{4} \text { (minutes) }
$$

and of a customer with two jobs

$$
E\left(W_{2}\right)=\frac{\rho_{1} \cdot \frac{1}{\mu}+\rho_{2}\left(\frac{1}{2} \cdot \frac{2}{\mu}+\frac{1}{2} \cdot \frac{1}{\mu}\right)}{\left(1-\rho_{1}\right)\left(1-\rho_{1}-\rho_{2}\right)}=\frac{25}{4} \text { (minutes) }
$$

d) The mean number of waiting customers with one job is

$$
E\left(L_{1}^{q}\right)=\frac{2}{3} \lambda E\left(W_{1}\right)=\frac{1}{8}
$$

and the mean number of waiting customers with two jobs is

$$
E\left(L_{2}^{q}\right)=\frac{1}{3} \lambda E\left(W_{2}\right)=\frac{5}{48} .
$$

So the mean number of unfinished jobs in the shop of the handyman is

$$
E\left(L_{1}^{q}\right) \cdot 1+E\left(L_{2}^{q}\right) \cdot 2+\rho_{1} \cdot 1+\rho_{2} \cdot \frac{3}{2}=\frac{5}{6} .
$$

Of course, this is the same answer as in \mathbf{b}), because the number of unfinished jobs does not depend on the order in which the handyman handles the jobs.
3. a) This problem can be described by an $M / G / \infty$ system, where a busy server corresponds to an outstanding order at the supplier. Denote by i the number of busy servers. Then $\max \{0,3-i\}$ is the number of books on the shelf. Note that $\lambda=1$ (customer/day) and $E(B)=2$ days, so $\rho=\lambda E(B)=2$. The long-run fraction of time p_{i} of i outstanding orders is

$$
p_{i}=e^{-\rho} \frac{\rho^{i}}{i!}=e^{-2} \frac{2^{i}}{i!}, \quad i=0,1,2, \ldots
$$

b) The mean number of books on the shelf is

$$
p_{0} \cdot 3+p_{1} \cdot 2+p_{2} \cdot 1=9 e^{-2} \approx 1.22
$$

c) The mean number of waiting customers equals

$$
\begin{aligned}
\sum_{i=3}^{\infty}(i-3) p_{i} & =\sum_{i=0}^{\infty}(i-3) p_{i}+\sum_{i=0}^{2} p_{i}(3-i) \\
& =\rho-3+\sum_{i=0}^{2} p_{i}(3-i) \\
& =2-3+9 e^{-2} \\
& \approx 0.22
\end{aligned}
$$

and hence, using Little's formula, we obtain $E(W)=0.22$ days.
4. As time unit we choose 1 minute. The second stage of the production line behaves as a $G / M / 1$ queue with $\mu=1$ and

$$
\widetilde{A}(s)=\frac{2}{3} \cdot \frac{1}{1+s}+\frac{1}{3} \cdot \frac{1}{1+3 s} .
$$

a) The mean interarrival time at the second stage of the production line equals the mean production time at machine 1 , and hence it is equal to $5 / 3$. The mean service time at the second stage of the production line equals the mean production time at machine 2 , and hence it is equal to 1 . We conclude that the fraction of time machine 2 is working equals $3 / 5$.
b) Solving

$$
\sigma=\widetilde{A}(\mu(1-\sigma))
$$

we obtain that $\sigma=\frac{2}{3}$ is the unique solution in the interval $(0,1)$. Hence, the sojourn time (in hours) is exponentially distributed with parameter $\mu(1-\sigma)=\frac{1}{3}$.
c) $E\left(L^{a}\right)=\frac{\sigma}{1-\sigma}=2$.
d) $E(S)=\frac{1}{\mu(1-\sigma)}=3$ and hence $E(L)=\lambda \cdot E(S)=\frac{3}{5} \cdot 3=1 \frac{4}{5}$.
5. As time unit we choose 1 minute:

$$
\lambda=1 / 10, E(B)=15 / 2, \rho=3 / 4 \text { and } E\left(R_{B}\right)=35 / 9 .
$$

a) The mean waiting time of a customer equals

$$
E(W)=E\left(L^{q}\right) \cdot 15 / 2+1 / 10 \cdot 15+1 / 10 \cdot 5+1 / 20 \cdot 5 / 2+3 / 4 \cdot 35 / 9 .
$$

Together, with Little's formula $E\left(L^{q}\right)=1 / 10 \cdot E(W)$, this gives $E(W)=121 / 6=20.17$ minutes. Hence, the mean sojourn time of a customer equals $E(S)=27.67$ minutes.
b) The fraction of time that the server serves customers is $3 / 4$. The mean duration of a period that the server is away equals $10+10+5=25$ minutes. Hence, the mean duration of a busy period equals 75 minutes.

