Answers Exam Queueing Theory

Monday, May 21, 2012, 16.00-19.00.

1. a) Since $\rho=\frac{4}{7}$,

$$
E(S)=\frac{\frac{1}{14}}{1-\frac{4}{7}}=\frac{1}{6}(\text { hour })=10(\mathrm{~min}) .
$$

b) $\quad P\left(S>\frac{1}{3}\right)=e^{-2} \approx 0.135$.
c) The balance equations are

$$
\begin{aligned}
8 p_{0} & =14 p_{1, f}+2 p_{1, s} \\
10 p_{1, s} & =14 p_{2} \\
8\left(p_{1, f}+p_{1, s}\right) & =16 p_{2} \\
16 p_{n} & =8 p_{n-1}, \quad n>2 .
\end{aligned}
$$

The solution of this set of equations, together with the normalization equation, is
$\begin{array}{ll}p_{0}=\frac{7}{27}, \quad p_{1, f}=\frac{3}{27}, \quad p_{1, s}=\frac{7}{27}, \quad p_{n}=\frac{5}{27}\left(\frac{1}{2}\right)^{n-2}, \quad n \geq 2 . \\ & E(L)=p_{1, s}+p_{1, f}+\sum_{n=2}^{\infty} n p_{n}=\frac{40}{27}, \quad E(S)=\frac{1}{8} \cdot \frac{40}{27}=\frac{5}{27} \text { (hour), }\end{array}$ which is greater than $\frac{1}{6}$. So it's not a good idea to use the old machine!
2. a) Let B denote the processing time plus a possible cleaning time, and let R denote the residual of B. Then it follows that

$$
\widetilde{B}(s)=\frac{2\left(1+\frac{7}{8} s\right)}{(2+s)(1+s)}, \quad \widetilde{R}(s)=\frac{2+\frac{8}{5} s}{(2+s)(1+s)}
$$

Hence, with $\rho=1 \cdot\left(\frac{1}{2}+\frac{1}{8}\right)=\frac{5}{8}$,

$$
\begin{aligned}
\widetilde{W}(s) & =\frac{1-\rho}{1-\rho \widetilde{R}(s)} \\
& =\frac{3(2+s)(1+s)}{8 s^{2}+16 s+6} \\
& =\frac{3(2+s)(1+s)}{8\left(s+\frac{1}{2}\right)\left(s+\frac{3}{2}\right)} \\
& =\frac{3}{8}+\frac{9}{16} \cdot \frac{1}{1+2 s}+\frac{1}{16} \cdot \frac{1}{1+\frac{2}{3} s} .
\end{aligned}
$$

b) Hence,

$$
P(W>t)=\frac{9}{16} e^{-\frac{1}{2} t}+\frac{1}{16} e^{-\frac{3}{2} t}
$$

so

$$
P(W>2)=\frac{9}{16} e^{-1}+\frac{1}{16} e^{-3} \approx 0.215 .
$$

c) From a),

$$
E(W)=\frac{9}{16} \cdot 2+\frac{1}{16} \cdot \frac{2}{3}=\frac{7}{6} \text { (hour). }
$$

Or,

$$
E(W)=E\left(L^{q}\right)\left(\frac{1}{2}+\frac{1}{8}\right)+1 \cdot \frac{1}{2} \cdot\left[\frac{1}{2}+\frac{1}{8} \cdot 1\right]+1 \cdot \frac{1}{8} \cdot 1=E\left(L^{q}\right) \cdot \frac{5}{8}+\frac{7}{16},
$$

so with $E\left(L^{q}\right)=1 \cdot E(W)$,

$$
E(W)=\frac{8}{3} \cdot \frac{7}{16}=\frac{7}{6} \text { (hour). }
$$

Hence

$$
E(S)=E(W)+\frac{1}{2}=\frac{5}{3} \text { (hour). }
$$

3. a) The mean interarrival time of a batch is $\frac{2}{3}$ hour; the mean processing time of a batch is $\frac{1}{\mu}=\frac{1}{4}$ hour. Hence, the utilization of the furnace is $\rho=\frac{3}{2} \cdot \frac{1}{4}=\frac{3}{8}$.
b) The batch process of the furnace can be modeled as an $E_{2} / M / 1$ system. The arrival distribution is

$$
a_{n}=(1-\sigma) \sigma^{n}, \quad n=0,1,2, \ldots,
$$

where σ is the unique root on $(0,1)$ of

$$
\sigma=\widetilde{A}(\mu(1-\sigma))=\left(\frac{3}{3+4(1-\sigma)}\right)^{2}
$$

This yields $\sigma=\frac{1}{4}$.
c) The distribution of the production lead time S of a batch is exponential with mean $\frac{1}{4(1-\sigma)}=\frac{1}{3}$ hour. Hence,

$$
P\left(S>2 \cdot \frac{1}{3}\right)=e^{-2} \approx 0.135 .
$$

d) The production lead time S_{p} of a pod is the waiting time till the batch is complete plus the sojourn time of a batch. Hence,

$$
E\left(S_{p}\right)=\frac{1}{2} \cdot \frac{1}{3}+\frac{1}{2} \cdot 0+E(S)=\frac{1}{2} \text { (hour). }
$$

4. a) Denote the short packets by type 1 , the long ones by type 2 . Then

$$
\lambda_{1}=\frac{1}{8} \cdot \frac{2}{5}=\frac{1}{20}, \quad B_{1}=1, \quad \rho_{1}=\frac{1}{20}, \quad \lambda_{2}=\frac{1}{8} \cdot \frac{3}{5}=\frac{3}{40}, \quad B_{2}=10, \quad \rho_{2}=\frac{3}{4} .
$$

Hence,
$E(W)=\frac{\rho_{1} \cdot \frac{1}{2}+\rho_{2} \cdot 5}{1-\rho_{1}-\rho_{2}}=\frac{151}{8}=18 \frac{7}{8}$.
b) $\quad E\left(W_{1}\right)=\frac{\rho_{1} \cdot \frac{1}{2}+\rho_{2} \cdot 5}{1-\rho_{1}}=\frac{151}{38}=3 \frac{37}{38}, \quad E\left(W_{2}\right)=\frac{\rho_{1} \cdot \frac{1}{2}+\rho_{2} \cdot 5}{\left(1-\rho_{1}\right)\left(1-\rho_{1}-\rho_{2}\right)}=\frac{755}{38}=19 \frac{33}{38}$.
c) The expected time, that the interface is asleep, is equal to $e^{-\frac{1}{8}} \cdot 8$. Hence, for type 1 it follows that, with $\rho=\rho_{1}+\rho_{2}=\frac{4}{5}$,

$$
\begin{aligned}
E\left(W_{1}\right)= & \rho_{1} \cdot \frac{1}{2}+\rho_{2} \cdot 5+E\left(L_{1}^{q}\right) \cdot 1+ \\
& +(1-\rho) \cdot\left[\frac{1}{2+8 e^{-\frac{1}{8}}} \cdot\left(\frac{1}{2}+1\right)+\frac{8 e^{-\frac{1}{8}}}{2+8 e^{-\frac{1}{8}}} \cdot 1+\frac{1}{2+8 e^{-\frac{1}{8}}} \cdot \frac{1}{2}\right] \\
= & \frac{151}{40}+E\left(L_{1}^{q}\right)+\frac{1}{5} .
\end{aligned}
$$

and thus, with Little's law $E\left(L_{1}^{q}\right)=\lambda_{1} E\left(W_{1}\right)=\frac{1}{20} E\left(W_{1}\right)$,

$$
E\left(W_{1}\right)=\frac{151}{38}+\frac{20}{19} \cdot \frac{1}{5}=\frac{159}{38}=4 \frac{7}{38}, \quad E\left(L_{1}^{q}\right)=\frac{159}{760} .
$$

For $E\left(W_{2}\right)$ it follows that

$$
E\left(W_{2}\right)=\rho_{1} \cdot \frac{1}{2}+\rho_{2} \cdot 5+E\left(L_{1}^{q}\right) \cdot 1+E\left(L_{2}^{q}\right) \cdot 10+\frac{1}{5}+\rho_{1} E\left(W_{2}\right)
$$

so, with $E\left(L_{2}^{q}\right)=\lambda_{2} E\left(W_{2}\right)$,

$$
E\left(W_{2}\right)=5 \cdot\left(\frac{151}{40}+\frac{159}{760}+\frac{1}{5}\right)=\frac{151}{8}+\frac{159}{152}+1 \approx 20.92 .
$$

d) The percentage of energy saving is

$$
(1-\rho) \cdot \frac{8 e^{-\frac{1}{8}}}{2+8 e^{-\frac{1}{8}}} \cdot 0.9 \cdot 100 \% \approx 14 \%
$$

