Answers Exam Queueing Theory

Monday, June 25, 2012, 14.00-17.00.

1. a) Let p_{n} be the equilibrium probability of having n guests at the reception. The cut equations are given by

$$
\begin{aligned}
12 p_{1} & =3 p_{0} \\
12 p_{n+1} & =3 p_{n}+\frac{3}{2} p_{n-1}, \quad n=1,2 \ldots .
\end{aligned}
$$

The solution of this set of equations, together with the normalization equation, is

$$
p_{n}=\frac{5}{12}\left(\frac{1}{2}\right)^{n}+\frac{5}{24}\left(-\frac{1}{4}\right)^{n} .
$$

b) We have

$$
E(L)=\sum_{n=0}^{\infty} n p_{n}=\frac{4}{5} .
$$

The average number of guests arriving at the reception is $\lambda=\frac{9}{2}$ guests per hour. Hence, using Little's law we obtain $E(S)=E(L) / \lambda=8 / 45$ hours $=32 / 3$ minutes and $E(W)=E(S)-E(B)=17 / 3$ minutes.
c) The mean waiting time of a customer who arrived in a group of two and is served after the other guest arriving at the same time is given by

$$
E\left(W^{(\text {second })}\right)=E(L) \cdot 5+5=9 \text { minutes. }
$$

2. a) With time unit minute we have

$$
\lambda_{A}=\frac{3}{60}, \quad E\left(B_{A}\right)=E\left(R_{A}\right)=8, \quad \rho_{A}=\frac{2}{5}, \quad \lambda_{B}=\frac{5}{60}, \quad E\left(B_{B}\right)=E\left(R_{B}\right)=4, \quad \rho_{B}=\frac{1}{3} .
$$

The mean value relations are given by

$$
\begin{aligned}
& E\left(S_{A}\right)=E\left(L_{A}\right) 8+E\left(L_{B}\right) 4+8 \\
& E\left(S_{B}\right)=E\left(L_{A}\right) 8+E\left(L_{B}\right) 4+4, \\
& E\left(L_{A}\right)=\frac{3}{60} E\left(S_{A}\right), \\
& E\left(L_{B}\right)=\frac{5}{60} E\left(S_{B}\right) .
\end{aligned}
$$

and have solution

$$
E\left(S_{A}\right)=25, E\left(S_{B}\right)=21, E\left(L_{A}\right)=\frac{5}{4}, E\left(L_{B}\right)=\frac{7}{4} .
$$

Furthermore, we have $E\left(W_{A}\right)=E\left(W_{B}\right)=17$.
b) We have

$$
E(\text { Work })=\frac{5}{4} \cdot 8+\frac{7}{4} \cdot 4=17 \text { minutes. }
$$

c) We have

$$
E\left(S_{B}\right)=\frac{\rho_{A} E\left(R_{A}\right)+\rho_{B} E\left(R_{B}\right)}{1-\rho_{B}}+E\left(B_{B}\right)=10.8 \text { minutes }
$$

and

$$
E\left(S_{A}\right)=\frac{\rho_{A} E\left(R_{A}\right)+\rho_{B} E\left(R_{B}\right)}{\left(1-\rho_{B}\right)\left(1-\rho_{A}-\rho_{B}\right)}+E\left(B_{A}\right)=33.5 \text { minutes . }
$$

This gives

$$
E\left(W_{A}\right)=25.5, E\left(W_{B}\right)=6.8, E\left(L_{A}\right)=\frac{67}{40}, E\left(L_{B}\right)=\frac{9}{10}
$$

d) We have

$$
E(\text { Work })=\frac{67}{40} \cdot 8+\frac{9}{10} \cdot 4=17 \text { minutes. }
$$

This is the same as in part b. The amount of work in the system is independent of the service order!
3. As time unit we choose 1 hour. The second stage of the production line behaves as a $G / M / 1$ queue with $\mu=2$ and

$$
\widetilde{A}(s)=\frac{2}{2+s} \cdot \frac{3}{3+s}
$$

a) The mean interarrival time at the second stage of the production line equals the mean production time at machine 1 , and hence it is equal to 50 minutes. The mean service time at the second stage of the production line equals the mean production time at machine 2 , and hence it is equal to 30 minutes. We conclude that the fraction of time machine 2 is working equals $\rho=\frac{3}{5}$.
b) Solving

$$
\sigma=\widetilde{A}(\mu(1-\sigma))
$$

we obtain that $\sigma=\frac{1}{2}$ is the unique solution in the interval $(0,1)$. Hence, the sojourn time (in hours) is exponentially distributed with parameter $\mu(1-\sigma)=1$.
c) The total mean number of products in the second stage of the production line at an arrival instant is given by $E\left(L^{a}\right)=\frac{\sigma}{1-\sigma}=1$. The probability that machine 2 is occupied at an arrival instant is given by $\sigma=\frac{1}{2}$. Hence at an arrival instant the mean number of products on machine 2 is $\frac{1}{2}$ and the mean number of products in the buffer between machine 1 and machine 2 is $\frac{1}{2}$.
d) The total mean number of products in the second stage of the production line at an arbitrary instant is given by $E(L)=\frac{\rho}{1-\sigma}=\frac{6}{5}$. The probability that machine 2 is occupied at an arbitrary instant is given by $\rho=\frac{3}{5}$. Hence at an arbitrary instant the mean number of products on machine 2 is $\frac{3}{5}$ and the mean number of products in the buffer between machine 1 and machine 2 is $\frac{3}{5}$.
4. a) This is an $M / G / 1$ queue with $\rho=\frac{3}{5}$ and $E(R)=\frac{31}{3}$ minutes. Hence

$$
E(S)=\frac{\rho}{1-\rho} \cdot E(R)+E(B)=\frac{55}{2} \text { minutes } .
$$

b) The average length of an idle period is 20 minutes, the average length of a busy period is 30 minutes. Hence the average switch-on costs are 20 euro per 50 minutes, i.e. 24 euros per hour.
c) The arrival relation in the new situation is given by

$$
E(S)=[E(L)+1] \cdot 12-\rho_{2} \cdot 10-p_{\text {idle }} \cdot 10
$$

where $p_{\text {idle }}=\frac{2}{5}$ is the probability that the machine is switched off and $\rho_{2}=\frac{1}{10}$ is the probabililty that the machine is working on a second phase of a product. Together with Little's law $E(L)=\lambda E(S)$ this will lead to $E(S)=\frac{35}{2}$ minutes.

