## Answers Exam Queueing Theory

Monday, May 19, 2014, 13.30-16.30.

1. a) Random splitting of a Poisson process gives two independent Poisson processes. As a consequence, the number of jobs at the two machines are independent of each other.
b) Both machines behave as $M / M / 1$ queues. For machine 1 we have $\lambda_{1}=\frac{3}{2}, \mu_{1}=2$ and hence $\rho_{1}=\frac{3}{4}$. For machine 2 we have $\lambda_{2}=\frac{1}{2}, \mu_{2}=1$ and hence $\rho_{2}=\frac{1}{2}$. Because of the independence of the two systems (see a), we have

$$
p_{i, j}=\left(1-\rho_{1}\right) \rho_{1}^{i} \cdot\left(1-\rho_{2}\right) \rho_{2}^{j}=\frac{1}{8}\left(\frac{3}{4}\right)^{i}\left(\frac{1}{2}\right)^{j} .
$$

c) We have

$$
E\left(W_{1}\right)=\frac{\rho_{1}}{1-\rho_{1}} \cdot \frac{1}{\mu_{1}}=\frac{3}{2} \text { hour } \quad \text { and } \quad E\left(W_{2}\right)=\frac{\rho_{2}}{1-\rho_{2}} \cdot \frac{1}{\mu_{2}}=1 \text { hour }
$$

and hence

$$
E(W)=\frac{3}{4} E\left(W_{1}\right)+\frac{1}{4} E\left(W_{2}\right)=\frac{11}{8} \text { hour. }
$$

Furthermore,

$$
P(W>1)=\frac{3}{4} P\left(W_{1}>1\right)+\frac{1}{4} P\left(W_{2}>1\right)=\frac{9}{16} e^{-1 / 2}+\frac{1}{8} e^{-1 / 2}=\frac{11}{16} e^{-1 / 2} .
$$

d) The mean number of crowded periods per day equals $48\left(p_{0,1}+p_{1,0}\right)=48 \cdot \frac{5}{32}=\frac{15}{2}=7 \frac{1}{2}$.
e) The fraction of time the system is crowded is $1-p_{0,1}-p_{0,1}-p_{1,0}=\frac{23}{32}$. Hence, the average number of crowded hours per day is equal to $24 \cdot \frac{23}{32}=\frac{69}{4}=17 \frac{1}{4}$. Hence, the expected duration of a crowded period is $\frac{69}{4} / \frac{15}{2}=\frac{23}{10}=2.3$.
2. a) The machine works with speed 2. On this machine the processing time of a type 1 job is exponential with a mean of $\frac{1}{4}$ hours and the processing time of a type 2 job is exponential with a mean of $\frac{1}{2}$ hours. Hence,

$$
\widetilde{B}(s)=\frac{3}{4} \cdot \frac{4}{4+s}+\frac{1}{4} \cdot \frac{2}{2+s}=\frac{8+\frac{7}{2} s}{(4+s)(2+s)} .
$$

b) With $\rho=2 \cdot\left(\frac{3}{4} \cdot \frac{1}{4}+\frac{1}{4} \cdot \frac{1}{2}\right)=\frac{5}{8}$, we have

$$
\begin{aligned}
\widetilde{W}(s) & =\frac{(1-\rho) s}{\lambda \widetilde{B}(s)+s-\lambda} \\
& =\frac{3(4+s)(2+s)}{8\left(s^{2}+4 s+3\right)} \\
& =\frac{3(4+s)(2+s)}{8(s+1)(s+3)} \\
& =\frac{3}{8}+\frac{9}{16} \cdot \frac{1}{1+s}+\frac{1}{16} \cdot \frac{3}{3+s} .
\end{aligned}
$$

c) We have

$$
P(W>1)=\frac{9}{16} e^{-1}+\frac{1}{16} e^{-3} \approx 0.215
$$

d) We have

$$
E(W)=\frac{9}{16} \cdot 1+\frac{1}{16} \cdot \frac{1}{3}=\frac{7}{12} \text { hour }
$$

and from Little's law

$$
E\left(L^{q}\right)=\lambda E(W)=\frac{7}{6}
$$

3. The system can be modeled as a $G / M / 1$ system. Time unit: minute. The Laplace-Stieltjes transform of the inter-arrival times is given by $\widetilde{A}(s)=\frac{1}{1+4 s} \cdot \frac{1}{1+6 s}$, the service rate $\mu=\frac{1}{6}$. The mean interarrival time is 10 minutes. The occupation rate of the machine is $\rho=\frac{3}{5}$.
a) The arrival distribution is

$$
a_{n}=(1-\sigma) \sigma^{n}, \quad n=0,1,2, \ldots,
$$

where $\sigma$ is the unique root on $(0,1)$ of

$$
\sigma=\widetilde{A}(\mu(1-\sigma))=\frac{3}{(5-2 \sigma)(2-\sigma)} .
$$

This yields $\sigma=\frac{1}{2}$.
b) For the Laplace-Stieltjes transform of the waiting time we have

$$
\widetilde{W}(s)=\sum_{n=0}^{\infty} a_{n}\left(\frac{\mu}{\mu+s}\right)^{n}=\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n+1}\left(\frac{1}{1+6 s}\right)^{n}=\frac{1+6 s}{1+12 s}=\frac{1}{2}+\frac{1}{2} \cdot \frac{1}{1+12 s} .
$$

c) We have $P(W>t)=\sigma e^{-\mu(1-\sigma) t}$. Hence $P(W>12)=\frac{1}{2} e^{-1}$.
4. The arrival rate is $\lambda=\frac{1}{4}$ per hour and the service time $B=U\left[0, \frac{20}{3}\right]$ hour. Note that if $X=U[a, b]$, then

$$
E(X)=\frac{a+b}{2}, \quad \operatorname{var}(X)=\frac{1}{12}(b-a)^{2}, \quad c_{X}^{2}=\frac{\operatorname{var}(X)}{(E(X))^{2}}=\frac{1}{3}\left(\frac{b-a}{b+a}\right)^{2} .
$$

a) $E(B)=\frac{10}{3}$ hour, $\operatorname{var}(B)=\frac{1}{12}\left(\frac{20}{3}\right)^{2}=\frac{100}{27}=3.7$ hour $^{2}$. Further, $E(R)=\frac{20}{9}$ hour, and $\rho=\lambda E(B)=\frac{5}{6}$.
b) We have

$$
\begin{aligned}
& E(W)=E\left(L^{q}\right) \cdot E(B)+\rho \cdot E(R)+(1-\rho) \cdot \frac{1}{1+e^{-1 / 4} \cdot 4} \cdot \frac{1}{2}, \\
& E\left(L^{q}\right)=\lambda \cdot E(W) .
\end{aligned}
$$

Hence

$$
E(W)=\frac{\rho}{1-\rho} \cdot E(R)+\frac{1}{1+e^{-1 / 4} \cdot 4} \cdot \frac{1}{2}=\frac{100}{9}+\frac{1}{1+e^{-1 / 4} \cdot 4} \cdot \frac{1}{2}=11.23 \text { hour }
$$

and

$$
E(S)=E(W)+E(B)=14.56 \text { hour. }
$$

c) Now we have $B_{1}=U\left[0, \frac{10}{3}\right], B_{2}=U\left[\frac{10}{3}, \frac{20}{3}\right], \lambda_{1}=\lambda_{2}=\frac{1}{8}$. So $E\left(B_{1}\right)=\frac{5}{3}$ hour, $E\left(B_{2}\right)=5$ hour, $\rho_{1}=\frac{5}{24}$ and $\rho_{2}=\frac{5}{8}$. For the small (high priority) orders we get

$$
\begin{aligned}
E\left(W_{1}\right) & =E\left(L_{1}^{q}\right) \cdot E\left(B_{1}\right)+\rho \cdot E(R)+(1-\rho) \cdot \frac{1}{1+e^{-1 / 4} \cdot 4} \cdot \frac{1}{2} \\
E\left(L_{1}^{q}\right) & =\lambda_{1} \cdot E\left(W_{1}\right)
\end{aligned}
$$

so

$$
E\left(W_{1}\right)=\frac{\rho}{1-\rho_{1}} \cdot E(R)+\frac{1-\rho}{1-\rho_{1}} \cdot \frac{1}{1+e^{-1 / 4} \cdot 4} \cdot \frac{1}{2}=2.36 \text { hour }
$$

and

$$
E\left(S_{1}\right)=E\left(W_{1}\right)+E\left(B_{1}\right)=4.03 \text { hour. }
$$

For the large (low priority) orders, it follows that

$$
\begin{aligned}
E\left(W_{2}\right)= & E\left(L_{1}^{q}\right) \cdot E\left(B_{1}\right)+E\left(L_{2}^{q}\right) \cdot E\left(B_{2}\right)+\rho \cdot E(R)+(1-\rho) \cdot \frac{1}{1+e^{-1 / 4} \cdot 4} \cdot \frac{1}{2} \\
& +\lambda_{1} \cdot E\left(W_{2}\right) \cdot E\left(B_{1}\right) \\
E\left(L_{2}^{q}\right)= & \lambda_{2} \cdot E\left(W_{2}\right)
\end{aligned}
$$

so

$$
E\left(W_{2}\right)=\frac{E\left(W_{1}\right)}{1-\rho}=14.16 \text { hour }
$$

and

$$
E\left(S_{2}\right)=E\left(W_{2}\right)+E\left(B_{2}\right)=19.16 \text { hour. }
$$

