The exam consists of 5 questions worth 10 points each. Your grade is given by $1 + \frac{9p}{50}$, where p is the total number of points obtained.

Note: You are only allowed to use the handout written by the lecturers. Good luck!

Question 1 (10 points):

Consider the following instance of problem $J2||C_{max}$:

 $n=6,\ p=\begin{pmatrix}2&9&5&1&3&-\\4&4&2&6&-&3\end{pmatrix}$, jobs 1 and 2 have to be processed first on M_1 , jobs 3 and 4 have to be processed first on M_2 .

Apply the presented optimal algorithm for problem $J2||C_{max}$ to this instance. Explain the different steps, give the results of these steps and present the optimal solution.

Question 2 (10 points):

Consider problem $1|d_i = d|\sum T_i$ (minimize total tardiness if all jobs have equal due date d).

Give a scheduling rule that leads to an optimal solution and proof that an optimal schedule can be found by this rule.

Question 3 (10 points):

Proof that problem $P2||\sum w_iC_i$ is NP-hard.

Question 4 (10 points):

Consider problem $P||C_{max}$.

Give the maximal number of jobs (dependent on the number m of machines) for which LPT leads always to an optimal solution and prove that this is true.

Question 5 (10 points, indication 300 words):

Give a general description of different variants of the charging problem for electric vehicles. Describe the problems including objectives and constraints. Furthermore, give a sketch of the solution approach for the basic variant of the problem.

END OF THE EXAM