The exam consists of 5 questions worth 10 points each. Your grade is given by $1 + \frac{9p}{50}$, where p is the total number of points obtained.

Note: You are only allowed to use the handout written by the lecturers. Good luck!

Question 1 (10 points):

Consider the following instance of problem $J2||C_{max}$:

 $n=7, p=\begin{pmatrix}2&2&4&8&3&3&-\\1&3&3&9&1&2&1\end{pmatrix}$, jobs 2 and 5 first have to be processed on M_1 , jobs 1, 3, 4, and 6 first have to be processed on M_2 and job 7 only has to be processed on M_2 .

Apply the optimal algorithm presented in the lecture for problem $J2||C_{\max}|$ to this instance. Explain the different steps, give the results of these steps and present the optimal solution.

Question 2 (10 points):

Consider a machine environment α with job characteristics β . Suppose that we can find an optimal solution to $\alpha|\beta|\sum T_j$ in polynomial time. Use this to describe a polynomial time algorithm to solve $\alpha|\beta|L_{\max}$ and prove that this algorithm leads to an optimal solution.

Question 3 (10 points):

Consider a special case of $1||\sum w_j U_j|$ where the weight w_j of each job is the same as its processing time p_j and the due dates are all the same: $w_j = p_j$ and $d_j = d$ for all j. Provide a polynomial time algorithm for this special case or prove that this special case is NP-hard.

Question 4 (10 points):

Consider problem $P||\mathcal{C}_{\max}$ and consider only instances for which an optimal solution has at least 3 jobs on each machine. Prove that the LPT rule leads to a $\frac{4}{3} - \frac{1}{3m}$ approximation of the problem.

Question 5 (10 points, indication 300 words):

Consider the Electric Vehicle charging problem with the additional option 'Vehicle-to-Grid'. Give a general description of this problem and explain how the 'Vehicle-to-grid' option changes the problem structure compared to the base problem without this option. Furthermore, give a sketch of how this problem can be solved.

END OF THE EXAM