Course 191551200 "Scientific Computing" test T_{1}

February 22, 2012, 13:45-14:05

Your name:
Your student number:

Space for your drafts (will not be checked)

1. (25 points ${ }^{1}$) Determine $L \in \mathbb{R}^{3 \times 3}$ such that $L^{-1}=L_{2} L_{1}$,

$$
L_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
a & 1 & 0 \\
b & 0 & 1
\end{array}\right], \quad L_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & c & 1
\end{array}\right], \quad a, b, c \in \mathbb{R}
$$

You are supposed to write down L, rather than to compute L.
2. (10 p) Give the definition of the Schur decomposition.
3. (25 p) Determine the Schur decomposition of the matrix A (given below) by finding suitable permutations of rows and columns.

$$
A=\left[\begin{array}{ccc}
a & 0 & 0 \\
b & c & 0 \\
d & e & f
\end{array}\right], \quad a, b, c, d, e, f \in \mathbb{R}
$$

[^0]Space for your drafts (will not be checked)
4. (10 p) Give the definition of the SVD of a matrix $A \in \mathbb{C}^{m \times n}, m \geqslant n$.
5. $(30 \mathrm{p})$ Let $A \in \mathbb{R}^{3 \times 2}$. It is known that if a vector $x \in \mathbb{R}^{2}$ is written as $x=\alpha\left[\begin{array}{c}1 \\ -1\end{array}\right]+\beta\left[\begin{array}{l}1 \\ 1\end{array}\right]$, with $\alpha, \beta \in \mathbb{R}$, then

$$
A x=2 \alpha\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+\beta\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Determine the SVD of A. Motivate your answer.

[^0]: ${ }^{1}$ Total number of points is 100 .

