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Question 1 l(’;(‘. oints) Let A € R™™, r € R® and m < n be given. What can you say about

the following algorithm and the matrices V € R**(m*1) and B € R™+1*™ produced by it? Here, v;

. M+
denotes column j of VM-H .

1. define zero matrices B € R(M+1Xm gpd v ¢ Rax(m+1]
2. B:=|r|g vi:=70/8
3. forj=1,2,...,mdo
4. w = Av;
5. fori=1,2,...,7do
6. bij = (w,vi)
7. endfor
8. wi=w— Z{=1 bijvi
9. bjt1,5 = ||lwl2

10. if bj41,; = 0 stop

11. Vj41 = w/bj+1,j

12. endfor
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Question 2 |20 points) Assume a linear system Az = b is being solved for given A € R™*" and
b € R®. An iterative method for its solution has a property that its residual r; after k iterations
satisfies 7, = Py(A)ro, where o = b — Az is the initial residual, zy is the initial guess and Py is a
polynomial of degree k. Is this iterative method a Krylov subspace method? Explain why or why not.
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Question 3! 24 points) Assume m steps of the Arnoldi process for a matrix A € R™*™ and vector
r € R” produced the matrices Vy, 41 € R™ ™+ and H, € RODXm < Let H,, be formed by
the first m rows of H,,.

(a) Give a definition of the Rayleigh quotients of A. Prove that the Rayleigh quotients of H,, form
a subset of the Rayleigh quotients of A.

(b) Assume now that A = I'+.S where I is the identity matrix and S = —§*. Prove that the Rayleigh
quotients of Hy, lie in the complex plane on the line {z€ C|z=1+1iy, y € R,i® = -1}. ;
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Question 4(2() points) Let A € R™*", g(t) : R « ]R" and w® € R™ be given. The BDF2 scheme for
the time integration of the IVP w'(t) = —Aw(t) + g(t), w(0) = wP reads:
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where w* is the approximate solution at time t; = k7, w* &~ w(ty), 7 > 0 is the time step size an
g* = g(t). Assume also that w' is known.

(a) Rewrite BDF2 in the form of a linear system that has to be solved at every time step.

(b) Assume A = AT. Write this linear system in a preconditioned form, such that an application of
the MINRES iterative solver would be possible.
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MINRES would 1od  be possiie.
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