Course 19.155120.0 "Scientific Computing" test T_2

April 25, 2012, 13:45–14:05

Your name:	
Your student number:	

Space for your drafts (will not be checked)

Question 1 (30 points) Let $A \in \mathbb{R}^{n \times n}$, $r \in \mathbb{R}^n$ and $m \ll n$ be given. What can you say about the following algorithm and the matrices $V_{m+1} \in \mathbb{R}^{n \times (m+1)}$ and $B \in \mathbb{R}^{(m+1) \times m}$ produced by it? Here, v_j denotes column j of V_{m+1} .

define zero matrices $B \in \mathbb{R}^{(m+1) \times m}$ and $V_{m+1} \in \mathbb{R}^{n \times (m+1)}$ 1. $\beta := ||r||_2, v_1 := r/\beta$ 2.3. for j = 1, 2, ..., m do $w := Av_j$ 4. for i = 1, 2, ..., j do 5. $b_{ij} := (w, v_i)$ 6. 7.endfor $w := w - \sum_{i=1}^{j} b_{ij} v_i$ $b_{j+1,j} := \|w\|_2$ 8. 9. if $b_{j+1,j} = 0$ stop 10.11. $v_{j+1} := w/b_{j+1,j}$ 12.endfor

Question 2 (30 points) Assume a linear system Ax = b is being solved for given $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$. An iterative method for its solution has a property that its residual r_k after k iterations satisfies $r_k = P_k(A)r_0$, where $r_0 = b - Ax_0$ is the initial residual, x_0 is the initial guess and P_k is a polynomial of degree k. Is this iterative method a Krylov subspace method? Explain why or why not.

Space for your drafts (will not be checked)

Question 3 (20 points) Assume m steps of the Arnoldi process for a matrix $A \in \mathbb{R}^{n \times n}$ and vector $r \in \mathbb{R}^n$ produced the matrices $V_{m+1} \in \mathbb{R}^{n \times (m+1)}$ and $\underline{H}_m \in \mathbb{R}^{(m+1) \times m}$, m < n Let H_m be formed by the first m rows of \underline{H}_m .

- (a) Give a definition of the Rayleigh quotients of A. Prove that the Rayleigh quotients of H_m form a subset of the Rayleigh quotients of A.
- (b) Assume now that A = I + S where I is the identity matrix and $S = -S^*$. Prove that the Rayleigh quotients of H_m lie in the complex plane on the line $\{z \in \mathbb{C} \mid z = 1 + iy, y \in \mathbb{R}, i^2 = -1\}$.

Question 4 (20 points) Let $A \in \mathbb{R}^{n \times n}$, $g(t) : \mathbb{R} \leftarrow \mathbb{R}^n$ and $w^0 \in \mathbb{R}^n$ be given. The BDF2 scheme for the time integration of the IVP w'(t) = -Aw(t) + g(t), $w(0) = w^0$ reads:

$$\frac{3}{2}w^{k+2} - 2w^{k+1} + \frac{1}{2}w^k = -\tau Aw^{k+2} + g^{k+2}, \quad k \ge 0,$$

where w^k is the approximate solution at time $t_k = k\tau$, $w^k \approx w(t_k)$, $\tau > 0$ is the time step size and $g^k = g(t_k)$. Assume also that w^1 is known.

- (a) Rewrite BDF2 in the form of a linear system that has to be solved at every time step.
- (b) Assume $A = A^T$. Write this linear system in a preconditioned form, such that an application of the MINRES iterative solver would be possible.