Course 19.155120.0 "Scientific Computing" test T_{2}

April 24, 2013, 13:45-14:05

Your name:
Your student number:

Space for your drafts (will not be checked)

Question 1 (40 points) A linear system $A x=b$ is solved, with $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{n}$ given.
(a) (10 p) Write down the right-preconditioned system $\tilde{A} \tilde{x}=\tilde{b}$ for a preconditioner matrix $M \in$ $\mathbb{R}^{n \times n}$-more precisely, specify $\tilde{A}, \tilde{x}, \tilde{b}$ in terms of A, x, b and M.
(b) (15 p) Write down the (unpreconditioned) Richardson method for solving the right-preconditioned system given above. After that rewrite the Richardson method in terms of A, x, b and M.
(c) (15 p) For which choice of M will the Richardson iteration converge in the fastest possible way? Motivate your answer.

Space for your drafts (will not be checked)

Question 2 (30 points) For a matrix $A \in \mathbb{R}^{n \times n}$ it is known that all its Rayleigh quotients lie on the line $2+i \beta$ in the complex plane, with $\beta \in \mathbb{R}$ and $i^{2}=-1$. The line is thus parallel to the imaginary axis and crosses the real axis at point $2+i 0=2$. Is it true that the Ritz values of A will also lie on the line $2+i \beta$? Why or why not?

Question 3 (30 points) Write down the implicit trapezoidal rule for the initial value problem $w^{\prime}(t)=-A w(t)+g(t), w(0)=w^{0}$. After that rewrite the scheme as a linear system where the unknown vector is the solution w^{k+1} at the next time level, i.e., $w^{k+1} \approx w(\tau(k+1))$, with $\tau>0$ being the time step size and k the time step index.

