Course 19.155120.0 "Scientific Computing" test T_2

reexamination

May 6, 2014, 13:05–13:30

Your name:

Your student number:

Space for your drafts (will not be checked)

- Q1 A linear system Ax = b, with $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$ given, is solved by a Krylov subspace method.
- (10 p) (a) Finish the definition: an iterative method $x_0, x_1, \ldots, x_k, \ldots$ is called a Krylov subspace method if

 $x_k = x_0 + \dots, \qquad \in \mathcal{K}(\dots, \dots),$

where $\mathcal{K}(\ldots,\ldots)$ is called \ldots and is defined as

 $\mathcal{K}(\ldots,\ldots,\ldots) = \ldots$

(20 p) (b) Define the residual vector r_k . Show that $x_k - x_0$ is a polynomial in A (called the update polynomial) times the initial residual vector. Define the residual polynomial P_k and determine $P_k(0)$.

(20 p) (c) Assume we use the following basis of the Krylov subspace:

$$v_1 = r_0, v_2 = Ar_0, v_3 = A^2 r_0, \dots, v_k = A^{k-1} r_0$$

and the basis vectors v_i are the columns of matrix V_k . For a certain Krylov subspace method $x_k = x_0 + V_k \bar{y}, V_k \in \mathbb{R}^{n \times k}, \bar{y} \in \mathbb{R}^k$. Express the coefficients of the update polynomial $x_k - x_0$ in terms of \bar{y} .

Space for your drafts (will not be checked)

(20 p) Q2 For given large, sparse $A, B \in \mathbb{R}^{n \times n}$, consider generalized eigenproblem

$$Ax = \lambda Bx.$$

 B^{-1} can not be computed because it does fit into the computer memory. However linear systems Bu = v can be solved for any $v \in \mathbb{R}^n$. Can the given eigenproblem be solved with the Arnoldi method? If no, explain why. If yes, explain how you would organize computations.

(30 p) Q3 Give a definition of the stability region of a Runge-Kutta method. Determine the stability region of the explicit Euler scheme, assuming that the λ appearing in the stability test problem are the eigenvalues of a skew-symmetric matrix A. Would you recommend using explicit Euler for solving y' = Ay?