Course 19.155120.0 "Scientific Computing" test T_{3}

June 1, 2012, 8:45-9:05

Your name:
Your student number:

Space for your drafts (will not be checked)

Question 1 (35 points) Sylvester equation $A X-X B=C$ is solved for given $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{k \times k}$, $C \in \mathbb{R}^{n \times k}$ and unknown $X \in \mathbb{R}^{n \times k}$.

Q1a (10 p) Specify $(\operatorname{vec}(X))^{T}$ in terms of its columns $x_{i}, i=1, \ldots, k$: $(\operatorname{vec}(X))^{T}=\ldots$

Q1b (10 p) The Sylvester equation is transformed into an equivalent linear system $\mathcal{A} \operatorname{vec}(X)=\operatorname{vec}(C)$. Specify, without proof, the missing terms in the following formula (here $I_{n} \in \mathbb{R}^{n \times n}$ is the identity matrix):

$$
\mathcal{A}=\ldots \ldots \ldots-B^{T} \otimes I_{n}
$$

Q1c (15 p) Write down the matrix \mathcal{A} for A and B given below:

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right], \quad B=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], \quad \mathcal{A}=
$$

Question 2 (30 points) A nonlinear system of equation $F(x)=0$ is solved by an inexact Newton method, where $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a smooth mapping.

Q2a (10 p) Complete the formula below for the matrix free multiplication of the Jacobian times a vector $w \in \mathbb{R}^{n}$ (here $\delta>0$ is a small parameter and $x_{c} \in \mathbb{R}^{n}$ is the current solution vector):

$$
\begin{equation*}
F^{\prime}\left(x_{c}\right) w \approx \frac{1}{\delta}\left(F\left(x_{c}+\delta w\right)-\ldots \ldots \ldots\right) \tag{1}
\end{equation*}
$$

Q2b (10 p) Estimate accuracy of approximation (1) above, i.e. prove that the approximation error is $\mathcal{O}\left(\delta^{\ell}\right)$ and specify ℓ.

Q2c (10 p) How could we improve the accuracy of approximation (1)?

Space for your drafts (will not be checked)

Question 3 (35 points) Consider the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update, for given $B_{k} \in \mathbb{R}^{n \times n}$ and vectors x_{k}, x_{k+1}, y_{k} :

$$
B_{k+1}=B_{k}+\frac{y_{k} y_{k}^{T}}{y_{k}^{T}\left(x_{k+1}-x_{k}\right)}-\frac{B_{k}\left(x_{k+1}-x_{k}\right)\left(B_{k}\left(x_{k+1}-x_{k}\right)\right)^{T}}{\left(x_{k+1}-x_{k}\right)^{T} B_{k}\left(x_{k+1}-x_{k}\right)}
$$

Q3a (10 p) What is the rank of the matrix $y_{k} y_{k}^{T}$? Motivate your answer.

Q3b (10 p) What is the rank of the matrix $B_{k+1}-B_{k}$? Motivate your answer.

Q3c (15 p) Simplify $B_{k+1}\left(x_{k+1}-x_{k}\right)=\ldots$

