Course 19.155120.0 "Scientific Computing" test T_3

June 1, 2012, 8:45–9:05

Your name:	
Your student number:	

Space for your drafts (will not be checked)

Question 1 (35 points) Sylvester equation AX - XB = C is solved for given $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{k \times k}$, $C \in \mathbb{R}^{n \times k}$ and unknown $X \in \mathbb{R}^{n \times k}$.

- Q1a (10 p) Specify $(\operatorname{vec}(X))^T$ in terms of its columns $x_i, i = 1, \ldots, k$: $(\operatorname{vec}(X))^T = \ldots$
- Q1b (10 p) The Sylvester equation is transformed into an equivalent linear system $\mathcal{A} \operatorname{vec}(X) = \operatorname{vec}(C)$. Specify, without proof, the missing terms in the following formula (here $I_n \in \mathbb{R}^{n \times n}$ is the identity matrix):

$$\mathcal{A} = \ldots - B^T \otimes I_r$$

Q1c (15 p) Write down the matrix \mathcal{A} for A and B given below:

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \quad \mathcal{A} =$$

Question 2 (30 points) A nonlinear system of equation F(x) = 0 is solved by an inexact Newton method, where $F : \mathbb{R}^n \to \mathbb{R}^n$ is a smooth mapping.

Q2a (10 p) Complete the formula below for the matrix free multiplication of the Jacobian times a vector $w \in \mathbb{R}^n$ (here $\delta > 0$ is a small parameter and $x_c \in \mathbb{R}^n$ is the current solution vector):

$$F'(x_c)w \approx \frac{1}{\delta}(F(x_c + \delta w) - \dots \dots).$$
(1)

Q2b (10 p) Estimate accuracy of approximation (1) above, i.e. prove that the approximation error is $\mathcal{O}(\delta^{\ell})$ and specify ℓ .

Q2c (10 p) How could we improve the accuracy of approximation (1)?

Space for your drafts (will not be checked)

Question 3 (35 points) Consider the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update, for given $B_k \in \mathbb{R}^{n \times n}$ and vectors x_k, x_{k+1}, y_k :

$$B_{k+1} = B_k + \frac{y_k y_k^T}{y_k^T (x_{k+1} - x_k)} - \frac{B_k (x_{k+1} - x_k) (B_k (x_{k+1} - x_k))^T}{(x_{k+1} - x_k)^T B_k (x_{k+1} - x_k)}$$

Q3a (10 p) What is the rank of the matrix $y_k y_k^T$? Motivate your answer.

Q3b (10 p) What is the rank of the matrix $B_{k+1} - B_k$? Motivate your answer.

Q3c (15 p) Simplify $B_{k+1}(x_{k+1} - x_k) = \dots$