Course 19.155120.0 "Scientific Computing" test T_{3}

June 10, 2014, 15:45-16:15

Your name:
Your student number:

Space for your drafts (will not be checked)

Q1 Consider, for $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, the following problem: find $x \in \mathbb{R}^{n}$ such that

$$
\begin{equation*}
F(x)=0 . \tag{1}
\end{equation*}
$$

(5 p) (a) Formulate, without proof, the fixed point iteration for this problem if the fixed point mapping is $K(x)=x-F(x)$.
(15 p) (b) Formulate, without proof, a condition which is sufficient for the fixed point iteration to converge locally.
(20 p) (c) Consider the problem (1)

$$
\begin{equation*}
F(x)=\frac{1}{3} x * x-\frac{3}{2} x, \tag{2}
\end{equation*}
$$

where $*$ is the elementwise multiplication of the two vectors. For example if $x=(1,2,3)^{T}$ and $y=(2,2,1)^{T}$ then $x * y=(2,4,3)^{T}$. Consider the following two fixed point iterations:

$$
\text { iteration I: } K(x)=x-F(x), \quad \text { iteration II: } K(x)=x+F(x) .
$$

Which iteration would you prefer to find solutions x of problem (1),(2) such that $x \approx 0$? Of course, $x=0$ is a solution but the iterative scheme does not know this.
(10 p) (d) [Make this exercise as last.] Propose a preconditioner matrix $M \in \mathbb{R}^{n \times n}$ such that the preconditioned nonlinear problem (1),(2) could be solved with both fixed point iterations given above.

Space for your drafts (will not be checked)
(20 p) Q2 Consider matrix

$$
M=\left[\begin{array}{lll}
A & A & A \\
B & B & B \\
A & A & A
\end{array}\right] \in \mathbb{R}^{300 \times 300}
$$

where the matrices $A, B \in \mathbb{R}^{100 \times 100}$ are given. Write down a formula which defines M with the help of the Kronecker product in terms of A, B and some 3×3 matrices.
(10 p) Q3 (a) For sufficiently smooth $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ write down the first two terms of the Taylor series of $F(x+\delta w), x, w \in \mathbb{R}^{n}, \delta \in \mathbb{R}$, around point x.
(10 p) (b) Using the Taylor expansion write down an approximation for the Jacobian matrix-vector product $F^{\prime}(x) w$.

