T2. 21.04.15. Solutions

Question 1 (45 points) A linear system Ax = b is solved, with $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$ given.

(a) (20 p) Consider the following iterative method for solving the linear system Ax = b:

$$x_{1} = x_{0} + \alpha_{0} r_{0},$$

$$x_{k+1} = x_{k} + \alpha_{k} r_{k} + \beta_{k} r_{k-1}, \quad k \geqslant 1,$$
(1)

where r_k is the residual of the approximate solution x_k and α_k and β_k are scalars chosen such that

$$r_1 \perp r_0, \qquad r_{k+1} \perp r_k \quad \text{and} \quad r_{k+1} \perp r_{k-1}, \quad k \geqslant 1.$$
 (2)

The scalars α_k , β_k for $k \ge 1$ can be found as a solution of a system of two linear equations, i.e., a linear system with a matrix of size 2×2 . Derive this linear system.

$$r_{kH} = b - A(x_{k} + d_{k}r_{k} + \beta_{k}r_{k-1}) = r_{k} - d_{k} Ar_{k} - \beta_{k} Ar_{k-1}$$

$$0 = (r_{k}, r_{kH}) = (r_{k}, r_{k}) - d_{k} (r_{k}, Ar_{k}) - \beta_{k} (r_{k}, Ar_{k-1})$$

$$0 = (r_{k-1}, r_{kH}) = (r_{k-1}, r_{k}) - d_{k} (r_{k-1}, Ar_{k}) - \beta_{k} (r_{k-1}, Ar_{k-1})$$

$$10_{p}$$

$$10$$

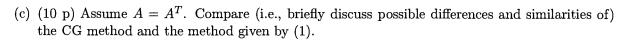
(b) (15 p) Assume now that $A = A^T$ and the 2×2 system from the previous question has a nonsingular matrix. Taking into account that

$$\begin{bmatrix} a & b \\ b & c \end{bmatrix}^{-1} = \frac{1}{ac - b^2} \begin{bmatrix} c & -b \\ -b & a \end{bmatrix}$$
 (for $ac - b^2 \neq 0$),

provide an explicit expression for
$$\alpha_{k}$$
 and β_{k} , $k \ge 1$.

If $A = A^{T}$ then $(r_{k}, Ar_{k-1}) = (A r_{k}, r_{k-1})$ and $(x,y) = (y,x)$ because everything is real. Then denote $a = (Ar_{k,1}r_{k})$, $b = (Ar_{k,1}, r_{k-1})$, $b = (Ar_{k,1}, r_{k-1})$, and we have

$$\begin{bmatrix}
A_{k} \\
B_{k}
\end{bmatrix} = \begin{bmatrix}
a_{k} \\
B_{k}
\end{bmatrix}^{-1} \begin{bmatrix}
a_{k} \\
B_{k}
\end{bmatrix}^{-1$$



If A is sip.d. then the method given by (1) should be the CG because CG was built by frequirement 10p that the residual is orthogonal w.r.t. the previous two residuals.

Question 2 (45 points) For given $A \in \mathbb{R}^{N \times N}$, $w^0 \in \mathbb{R}^N$ and $g(t) : \mathbb{R} \to \mathbb{R}^N$, consider initial-value problem (IVP)

$$w'(t) = -Aw(t) + g(t), \qquad w(0) = w^0,$$

where $w(t): \mathbb{R} \to \mathbb{R}^N$ is the unknown vector function.

(a) (10 p) Write down the backward Euler method for solving the IVP, denoting the time step size by τ . After that rewrite the method in the form of a linear system where the unknown vector is the solution at the next time level w^{n+1} .

$$\frac{w^{n+1}-w^{h}}{c} = -Aw^{n+1}+g^{n+1}$$

$$(T+cA) w^{n+1} = w^{h}+cg^{n+1}$$

$$5b$$

(b) (20 p) Let H and S be the Hermitian and skew-Hermitian parts of A, respectively. Let LL^T be the Cholesky factorization of the matrix $I + \tau H$ with I being the identity matrix. Assume a two-sided preconditioner with the preconditioner matrices $M_1 = L$ and $M_2 = L^T$ is applied to the linear system derived in the previous question. Specify the matrix of the preconditioned system in terms of I, τ , L and S. Give a relation between the w^{n+1} and the unknown vector \widetilde{w}^{n+1} of the preconditioned system.

$$\begin{array}{c} (T+\tau H+\tau S) & \text{wh} = b \Rightarrow L^{-1}(LL^{T}+\tau S)L^{-T}L^{T}wh = L^{-1}b & 10p \\ (T+\tau L^{-1}SL^{-T}) & \text{wh} = T \\ & \text{preconditioned matrix} & \text{wh} = L^{T}wh \\ \end{array}$$

(c) (15 p) Is it possible that the matrix of the preconditioned system from the previous system is the identity matrix plus a skew-symmetric matrix? Is it possible that the matrix H_k in the GMRES method applied to the preconditioned system is tridiagonal? Where in the complex plane are the Ritz values of the matrix of the preconditioned system located? Motivate your answers.

$$\widetilde{S}^{T} = (L^{T}SL^{T})^{T} = (L^{T})^{T}S^{T}L^{T} = L^{T}(S)L^{T} \Rightarrow skew symmetric, \quad \mathbf{Sp}.$$

$$\mathsf{H}_{K} = V_{K}^{T}(I + \mathsf{T}\widetilde{S})V_{K} = I + \mathsf{T}V_{K}^{T}\widetilde{S}V_{K} + upper \; \mathsf{Hessell} \; \mathsf{erg}$$

$$\mathsf{skew} \; \mathsf{sympnetric} \Rightarrow \mathsf{tridiagonal!} \; \mathsf{5p}.$$

$$\mathsf{Ritz} \; \mathsf{values} = \mathsf{e}. \; \mathsf{values} \; \mathsf{ef} \; \mathsf{H}_{K} \; \mathsf{are} \; \mathsf{on} \; \mathsf{the} \; \mathsf{line} \; \mathsf{A}$$

$$\mathsf{F}_{\mathsf{e}} = \mathsf{F}_{\mathsf{e}} \; \mathsf{values} \; \mathsf{ef} \; \mathsf{H}_{\mathsf{k}} \; \mathsf{are} \; \mathsf{on} \; \mathsf{the} \; \mathsf{line} \; \mathsf{A}$$

$$\mathsf{F}_{\mathsf{e}} = \mathsf{F}_{\mathsf{e}} \; \mathsf{values} \; \mathsf{ef} \; \mathsf{H}_{\mathsf{k}} \; \mathsf{are} \; \mathsf{on} \; \mathsf{the} \; \mathsf{line} \; \mathsf{A}$$