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5p Q1 We solve a linear system Ax = b iteratively. Define the error and the residual vectors for an
approximation xj = .
eror= X —Xxu, rexidual = b —Ax,
10 p Q2 Finish the definition of the FOM (fully orthogonal method):
An iterative method xj = xp -+ 2 for solving linear system Az = b is called FOM if the correction

vector zj, is chosen in the Krylov subspace Ki(A4,rp) in such a way that ......
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20p Q3 For which A can we say that FOM minimizes the error? In which norm is the error minimized?

Provide a short derivation.

Tor A=AY _ @ thy e Mo = Ax —Anc=A (x—x,)
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15p Q4 We solve an eigenproblem Ax = Az where A = BC™!D, the matrices B, C, D are large and
sparse and given explicitly but A itself is not. Provide a short algorithmic description for a power
method to solve this problem (indicating explicitly how approximate eigenvalue and eigenvectors

are defined).
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10p Q5 Assume we solve an eigenproblem Ax = Az. Finish the following statement: The shift-and-

invert (SAI) acceleration of an iterative eigensolver means that, instead of the matrix-vector
multiplications with the matrix A, the matrix-vector multiplications are carried out with the

matrix ......[.A .. Iy T)T’.I ................................................................ ’(
@* ..... @ ............. . &wweW*WfC“é




15p Q6 Can the power method as described in Question 4 be accelerated by the shift-and-invert (SAI)
approach? If yes, which linear solver (direct, iterative or both) can be used for solving the SAI
systems? Why?
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15p Q7 Recall that any Runge-Kutta method applied to the scalar test equation w'(t) = Aw(t) can
be written as w™*! = R(z)w", z = 7). Define the stability function and stability region of a
Runge-Kutta method. Ifrive the stability function for the backward Euler method.
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The grade is determined as G = (10 + p)/10, where p is the total number of points yearned.
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