| For each statement below, mark the box "correct" if you agree with the statement or the box "incorrect" otherwise. | |---| | \square correct \square incorrect CG (conjugate gradient method) is an efficient and optimal iterative method for solving linear systems with symmetric positive definite matrices. | | \square correct \square incorrect. The eigenvalues of a Hermitian matrix are purely imaginary complex numbers (i.e., they lie on imaginary axis in the complex plane). | | \Box correct \Box incorrect The backward Euler method (also known as the implicit Euler method) is a time integration scheme which, at each time step, requires a solution of a generally nonlinear system of equations. | | \Box correct \Box incorrect The symmetric successive overrelaxation (SSOR) preconditioner is obtained by computing the LU factorization of the system matrix while neglecting the newly introduced fill in. | | \square correct \square incorrect Sylvester equations (find X from $AX - XB = C$) can not be reformulated as an equivalent linear system in $x = \text{vec}(X)$. | | \square correct \square incorrect. The Gram-Schmidt orthogonalization process can be seen as an algorithm for computing the QR factorization. | | \Box correct \Box incorrect Assume that a 700 × 10 matrix B has only 8 positive singular values. The dimension of the null-space of B can be at most 3. | | \Box correct \Box incorrect Cholesky factorization is a form of QR factorization which is intended for symmetric positive definite matrices. | | \Box correct \Box incorrect The LU factorization method for solving linear systems can be computationally very expensive if the system size is large and the system matrix is sparse. This is because the L and U factors of the factorization can easily lose the sparsity of the original matrix. | | □ correct □ incorrect Any Hermitian positive definite matrix has a Cholesky factorization. | | \square correct \square incorrect. It is necessary for convergence of the Newton method that the Jacobian linear system is solved at each Newton iteration very accurately. | | \square correct \square incorrect The inexact Newton method is the Newton method in which the Jacobian linear system is solved at each Newton iteration approximately. | | \square correct \square incorrect Newton-Krylov methods are inexact Newton methods in which the Jacobian linear system is solved by a Krylov subspace iterative method. | | \square correct \square incorrect Preconditioning is applied to improve convergence of an iterative method. This improvement is often achieved due to eigenvalue clustering in the preconditioned matrix. | | \Box correct \Box incorrect It is impossible to design an iterative method which would be (i) equivalent in exact arithmetic to GMRES, (ii) efficient, (iii) applicable to linear systems with non-Hermitian matrices. | | \square correct \square incorrect. When applied to a linear system with a Hermitian matrix, the GMRES and MINRES iterative methods are mathematically (i.e. up to the rounding errors) equivalent. | | \Box correct \Box in
correct \Box in general, it is advisable to use GMRES for solving linear systems with symmetric matrices. | | \Box correct \Box incorrect Applying a third-order Runge-Kutta scheme with a time step size τ , we can not expect that the global error will behave as $O(\tau^3)$. | | \square correct \square incorrect Implicit trapezoidal rule is an A-stable Runge-Kutta method. | | \Box correct \Box incorrect To apply a Krylov iterative method for solving a linear system, we do not have to know the matrix of the system explicitly, it is sufficient to be able to compute the matrix-vector products with this matrix. |