Practice Exam for Stochastic Processes

The following practice exam consists of four problems worth a total of 36 points. Motivate all your anwsers and be as thorough as possible. When a derivation is required, you must provide the full derivation.

Good luck!

Problem 1 [9 points]

A machine functions for an amount of time having distribution F with mean μ and variance σ^{2}. When the machine is out of order, it is immediately replaced by another one which has the same lifetime distribution F, ect. Let $m(t)$ be the mean number of replacements of the machine up to time t and let $Y(t)$ be the excess or residual lifetime of the machine working at time t.

In a) and b), assume that F is an arbitrary distribution.
a) [3pt] Prove that

$$
m(t)=F(t)+\int_{0}^{t} m(t-x) d F(x), \quad t \geq 0
$$

b) [2pt] A new machine costs c_{1} euro and the price of the energy and maintenance is c_{2} euro per unit time. Determine the costs incurred per unit time in order to keep the system running.

In c) and d), assume that F is an Erlang-2 distribution:

$$
F(x)=1-e^{-\frac{2 x}{\mu}}-\frac{2 x}{\mu} e^{-\frac{2 x}{\mu}}, \quad x \geq 0
$$

c) $[2 \mathrm{pt}]$ Determine $\lim _{t \rightarrow \infty} \mathbb{E}[Y(t)]$.
d) [2pt] Give an approximation for $m(t)$ when t is large.

Problem 2 [7 points]

Consider the Markov chain $\left\{Z_{n}\right\}_{n \geq 0}$ with state space $E=\{0,1, \ldots, m\}, Z_{0}=z_{0}$ and transition probabilities

$$
p_{i j}= \begin{cases}1, & i=j=0 \text { or } i=j=m \\ \binom{m}{j}\left(\frac{i}{m}\right)^{j}\left(1-\frac{i}{m}\right)^{m-j}, & \text { otherwise }\end{cases}
$$

a) $[2 \mathrm{pt}]$ Show that $\left\{Z_{n}\right\}_{n \geq 0}$ is a martingale.
b) [3pt] Compute the probability of absorption by state 0 .
c) $[2 \mathrm{pt}]$ Use the Martingale Convergence Theorem to show that $\left\{Z_{n}\right\}_{n \geq 0}$ converges with probability one to a random variable Z. Use b) to write down the distribution of Z.

Problem 3 [8 points]

Let $\left\{S_{n}\right\}_{n \geq 0}$ be a simple symmetric random walk on \mathbb{Z}, i.e. $S_{n}=\sum_{i=1}^{n} X_{i}$ and $S_{0}=0$ with $\left\{X_{i}\right\}_{i \geq 0}$ a sequence of i.i.d. random variables such that

$$
\mathbb{P}\left(X_{i}=1\right)=\mathbb{P}\left(X_{i}=-1\right)=\frac{1}{2}
$$

For a fixed $a \in \mathbb{N}$ define

$$
T=\min \left\{n \in \mathbb{N}:\left|S_{n}\right|=a\right\}
$$

a) [2pt] Show that $M_{n}=S_{n}^{2}-n$ is a martingale.
b) $[2 \mathrm{pt}]$ Show that $\mathbb{E}[T]=a^{2}$.

Consider now the case of a biased random walk, namely

$$
\mathbb{P}\left(X_{i}=1\right)=p>\frac{1}{2} \quad \text { and } \quad \mathbb{P}\left(X_{i}=-1\right)=q=1-p
$$

Define $Y_{n}=e^{b S_{n}-c n}$ for constants b and c and define

$$
T_{1}=\min \left\{n \in \mathbb{N}: S_{n}=1\right\}
$$

c) [2pt] Derive a necessary relation between the constants b and c for which Y_{n} is a martingale.
d) $[2 \mathrm{pt}]$ Find the moment generating function $\mathbb{E}\left[e^{-c T_{1}}\right]$ for $c>0$.

Problem 4 [12 points]

Let $B(t)$ be a standard Brownian motion and define the Ornstein-Uhlenbeck process as

$$
Z(t)=e^{-t} B\left(e^{2 t}\right), \quad-\infty<t<\infty
$$

A stochastic process $\{X(t), t \geq 0\}$ is said to be stationary if for all $n, s, t_{1}, \ldots, t_{n}$ the random vectors $X\left(t_{1}\right), \ldots, X\left(t_{n}\right)$ and $X\left(t_{1}+s\right), \ldots, X\left(t_{n}+s\right)$ have the same joint distribution.
a) [4pt] Show that a necessary and sufficient condition for a Gaussian process to be stationary is that $\operatorname{Cov}(X(s), X(t))$ depends only on $t-s, s \leq t$ and $\mathbb{E}[X(t)]=c$ for some $c<\infty$.
b) $[3 \mathrm{pt}]$ Let χ be a standard normal random variable independent from $Z(t)$. Show that

$$
Z(t+s)=e^{-s} Z(t)+\chi \sqrt{1-e^{-2 s}}
$$

Hint: first show that

$$
Z(t+s)=e^{-(s+t)} B\left(e^{2 t}\right)+e^{-(s+t)}\left(B\left(e^{2(s+t)}\right)-B\left(e^{2 t}\right)\right)
$$

c) $[3 \mathrm{pt}]$ Obtain the covariance for the Ornstein-Uhlenbeck process.
d) $[2 \mathrm{pt}]$ Show that $Z(t)$ is a stationary Gaussian process.

