Problem 1

First we observe that the process described here is a renewal process, since the lifetimes of the machines are independent of each other. The arrivals in this process correspond to the arrivals of a new machine or, equivalently, the break down of the current machine.
a) If we condition the number of arrivals $N(t)$ on the first arrival then because the renewal process starts again after the first arrival and does not depend on this arrival we get

$$
\mathbb{E}\left[N(t) \mid X_{1}=x\right]= \begin{cases}0, & \text { if } x>t \\ 1+\mathbb{E}[N(t-x)] & \text { if } x \leq t\end{cases}
$$

Combining this we the law of total probability we get

$$
\begin{aligned}
m(t) & =\mathbb{E}[N(t)] \\
& =\int_{0}^{\infty} \mathbb{E}\left[N(t) \mid X_{1}=x\right] d F(x) \\
& =\int_{0}^{t} 1+\mathbb{E}[N(t-x)] d F(x) \\
& =F(t)+\int_{0}^{t} m(t-x) d F(x)
\end{aligned}
$$

b) Consider a Renewal Process for which the expected cost incurred per unit time is determined according to:

$$
\frac{\mathbb{E}[\text { Cost per cycle }]}{\mathbb{E}[\text { Cycle length }]}
$$

Now, the length of a cycle is the time period a machine is functioning. Therefore, the expected time of the cycle is μ. The expected cost per cycle is the cost of getting a new machine, c_{1} and the maintenance cost per time unit of functionality multiplied by the expected length of the functionality, which is $c_{2} \mu$. Thus,

$$
\frac{\mathbb{E}[\text { Cost per cycle }]}{\mathbb{E}[\text { Cycle length }]}=\frac{c_{1}+c_{2} \mu}{\mu}
$$

c) We will apply the Renewal theorem to $\mathbb{E}[Y(t)]$. For this we need to show that this satisfies the renewal equation. For this we again condition on the first arrival and use the renewal argument. This gives us

$$
\mathbb{E}\left[Y(t) \mid X_{1}=x\right]= \begin{cases}x-t & \text { if } t \leq x \\ \mathbb{E}[Y(t-x)] & \text { if } t>x\end{cases}
$$

and hence
$\mathbb{E}[Y(t)]=\int_{0}^{\infty} \mathbb{E}\left[Y(t) \mid X_{1}=x\right] d F(x)=\int_{t}^{\infty}(x-t) d F(x)+\int_{0}^{t} \mathbb{E}[Y(t-x)] d F(x)$.

Therefore, $\mathbb{E}[Y(t)]$ satisfies the renewal equation with $a(t)=\int_{t}^{\infty}(x-t) d F(x)$. In order to apply the Renewal Theorem we first need to show that $\int_{0}^{\infty}|a(t)| d t<$ ∞,

$$
\begin{aligned}
\int_{0}^{\infty}|a(t)| d t & =\int_{0}^{\infty} a(t) d t \\
& =\int_{0}^{\infty} \int_{t}^{\infty}(x-t) d F(x) d t \\
& =\int_{0}^{\infty} \int_{0}^{x}(x-t) d t d F(x) \\
& =\int_{0}^{\infty} \frac{1}{2} x^{2} d F(x) \\
& =\frac{1}{2}\left(\sigma^{2}+\mu^{2}\right)<\infty .
\end{aligned}
$$

Now by the Renewal Theorem we get

$$
\lim _{t \rightarrow \infty} \mathbb{E}[Y(t)]=\frac{1}{\mu} \int_{0}^{\infty} a(t) d t=\frac{\mu^{2}+\sigma^{2}}{2 \mu}
$$

d) For all $t \geq 0$, we have

$$
\begin{aligned}
\mathbb{E}[Y(t)] & =\mathbb{E}\left[S_{N(t)+1}\right]-t \\
& =\mu \mathbb{E}[N(t)+1]-t \\
& =\mu \mathbb{E}[N(t)]+\mu-t \\
& =\mu m(t)+\mu-t .
\end{aligned}
$$

Now, when T is large enough we have $\mathbb{E}\left[Y_{T}\right] \approx \frac{\mu^{2}+\sigma^{2}}{2 \mu}$. Hence, using the above equation,

$$
m(T) \approx \frac{1}{\mu}\left(T+\frac{\mu^{2}+\sigma^{2}}{2 \mu}\right)-1
$$

Problem 2

a) To show that Z_{n} is a martingale, we need to check:
i) $\mathbb{E}\left[\left|Z_{n}\right|\right] \leq m \leq \infty$, since the state space is bounded from above by m.
ii) First observe that if $Z_{n}=0$ or $Z_{n}=m$ then $p_{i j}=0$ for $j \neq 0$, $j \neq m$, respectively. Hence, in this case, we get $\mathbb{E}\left[Z_{n+1} \mid Z_{n}\right]=Z_{n}$. Now, suppose that $0<Z_{n}<m$. Then

$$
\begin{aligned}
\mathbb{E}\left[Z_{n+1} \mid Z_{n}\right] & =\sum_{j=0}^{m} P_{Z_{n} j} j \\
& =\sum_{j=0}^{m} \frac{m!}{(m-j)!j!}\left(\frac{Z_{n}}{m}\right)^{j}\left(1-\frac{Z_{n}}{m}\right)^{m-j} j \\
& =\sum_{j=1}^{m} \frac{m!}{(m-j)!j!}\left(\frac{Z_{n}}{m}\right)^{j-1}\left(1-\frac{Z_{n}}{m}\right)^{m-j} j \frac{Z_{n}}{m}
\end{aligned}
$$

Take $k=j-1$.

$$
\begin{aligned}
& =\sum_{k=0}^{m-1} \frac{m!(k+1)}{m(m-k-1)!(k+1)!}\left(\frac{Z_{n}}{m}\right)^{k}\left(1-\frac{Z_{n}}{m}\right)^{m-k-1} Z_{n} \\
& =\sum_{k=0}^{m-1} \frac{(m-1)!}{(m-1-k)!k!}\left(\frac{Z_{n}}{m}\right)^{k}\left(1-\frac{Z_{n}}{m}\right)^{m-k-1} Z_{n} \\
& =\left(\frac{Z_{n}}{m}+1-\frac{Z_{n}}{m}\right)^{m-1} Z_{n}=Z_{n}
\end{aligned}
$$

b) Define the following stopping time:

$$
T=\min _{n}\left\{Z_{n}=0 \text { or } Z_{n}=m\right\} .
$$

Then, since Z_{n} is a Markov chain with absorbing states 0 and m, it follows that $\mathbb{E}[T]<\infty$. Moreover, $\mathbb{E}\left[\mid Z_{n+1}-Z_{n} \| Z_{0}, \ldots, Z_{n}\right] \leq m$ for all n because the state space is bounded from above by m. Therefore we can apply Corollary 3.1 (p 260) from which it follows that

$$
\begin{equation*}
\mathbb{E}\left[Z_{T}\right]=\mathbb{E}\left[Z_{0}\right]=z_{0} \tag{1}
\end{equation*}
$$

Now denote by v_{0} the probability that state 0 is achieved before state m. Then,

$$
\mathbb{E}\left[Z_{T}\right]=v_{0} 0+\left(1-v_{0}\right) m=\left(1-v_{0}\right) m
$$

Plugging this into equation (1), we get

$$
v_{0}=1-\frac{z_{0}}{m}
$$

c) Since Z_{n} is a martingale, it is also a submartingale. Additionally, using again the fact that the state space is bounded, $\sup _{n \geq 0} \mathbb{E}\left[\left|X_{n}\right|\right] \leq m<\infty$. Hence, by the Martingale Convergence Theorem 5.1(a) (p278), there exists a random variable Z such that

$$
\mathbb{P}\left(\lim _{n \rightarrow \infty} Z_{n}=Z_{\infty}\right)=1
$$

Because Z_{n} is an absorbing Markov chain with absorbing states 0 and m, we either end in state 0 with probability $v_{0}=1-\frac{z_{0}}{m}$ or in state m with probability $\frac{z_{0}}{m}$. Therefore it follows that

$$
\mathbb{P}(Z=0)=1-\frac{z_{0}}{m} \quad \text { and } \quad \mathbb{P}(Z=m)=\frac{z_{0}}{m}
$$

which completely determines the distribution of Z.

Problem 3

a) First observe that $\mathbb{E}\left[X_{i}\right]=0$ and $\mathbb{E}\left[X_{i}^{2}\right]=1$ for all i. For the expectation we then have

$$
\mathbb{E}\left[\left|M_{n}\right|\right]=\mathbb{E}\left[\left|S_{n}^{2}-n\right|\right] \leq \mathbb{E}\left[\left|S_{n}^{2}\right|+n\right] \leq \mathbb{E}\left[n\left|X_{i}^{2}\right|+n\right]=2 n<\infty
$$

Furthermore,

$$
\begin{aligned}
\mathbb{E}\left[M_{n+1} \mid M_{n}\right] & =\mathbb{E}\left[M_{n+1} \mid S_{n}\right] \\
& =\mathbb{E}\left[\left(S_{n}+X_{n+1}\right)^{2}-(n+1) \mid S_{n}\right] \\
& =S_{n}^{2}-n+2 S_{n} \mathbb{E}\left[X_{n+1}\right]+\mathbb{E}\left[X_{n+1}^{2}\right]-1 \\
& =S_{n}^{2}-n=M_{n},
\end{aligned}
$$

which completes the proof that M_{n} is a martingale.
b) Since T bounds the state space, it follows that X_{n} is a positive recurrent Markov chain, which implies that the hitting of each state from any other state has finite expectation, hence $\mathbb{E}[T]<\infty$. Moreover, since for all $n<T$, $\left|S_{n}\right|<a$ we have

$$
\begin{aligned}
& \mathbb{E}\left[\left|M_{n+1}-M_{n}\right| \mid S_{0}, \ldots, S_{n}\right] \\
& =\mathbb{E}\left[\left|S_{n+1}^{2}-(n+1)-\left(S_{n}^{2}-n\right)\right| S_{0}, \ldots, S_{n}\right] \\
& =\mathbb{E}\left[\left|2 X_{n+1} S_{n}+X_{n+1}^{2}-1\right| \mid S_{0}, \ldots, S_{n}\right] \\
& \leq \mathbb{E}\left[\left|2 X_{n+1} S_{n}\right| \mid S_{0}, \ldots, S_{n}\right]+\mathbb{E}\left[\left|X_{n+1}\right|^{2} \mid S_{0}, \ldots, S_{n}\right]+1 \\
& =2 \mathbb{E}\left[\left|X_{n+1}\right|\left|S_{n}\right| \mid S_{0}, \ldots, S_{n}\right]+2 \\
& =2\left|S_{n}\right| \mathbb{E}\left[\left|X_{n+1}\right| \mid S_{0}, \ldots, S_{n}\right]+2 \\
& =2\left(\left|S_{n}\right|+1\right)<2(a+1)<\infty .
\end{aligned}
$$

Hence we can apply Corollary 3.1 (p260), from which we get that

$$
0=\mathbb{E}\left[M_{0}\right]=\mathbb{E}\left[M_{T}\right]=a^{2}-\mathbb{E}[T]
$$

which in turn implies that $\mathbb{E}[T]=a^{2}$.
c) For Y_{n} to be a martingale, it needs to satisfy the following two conditions:
i) $\mathbb{E}\left[\left|Y_{n}\right|\right] \leq \infty$ for all n, and
ii) $\mathbb{E}\left[Y_{n+1} \mid Y_{n}\right]=Y_{n}$ for all n.

The first condition follows, for all finite b and c, from the observation that $Y_{0}=1$ and for $n>1$,

$$
\begin{aligned}
\mathbb{E}\left[\left|Y_{n}\right|\right] & =\mathbb{E}\left[\left|e^{b S_{n}-c n}\right|\right] \\
& =\mathbb{E}\left[e^{b S_{n}-c n}\right] \\
& =\mathbb{E}\left[e^{b \sum_{i=1} X_{i}} e^{-c n}\right] \\
& =\mathbb{E}\left[e^{b X_{i}}\right]^{n} e^{-c n} \\
& =e^{-c n}\left(p e^{b}+q e^{-b}\right)^{n}<\infty .
\end{aligned}
$$

For the second condition we need that

$$
\begin{aligned}
Y_{n} & =\mathbb{E}\left[Y_{n+1} \mid Y_{n}\right] \\
& =\mathbb{E}\left[e^{b S_{n+1}-c(n+1)} \mid Y_{n}\right]=Y_{n} e^{-c} \mathbb{E}\left[e^{b X_{n+1}}\right] \\
& =Y_{n} e^{-c}\left(e^{b} p+e^{-b} q\right) .
\end{aligned}
$$

Hence $e^{-c}\left(p e^{b}+q e^{-b}\right)=1$.
d) Suppose that Y_{n} is a martingale then, because Y_{n} is a Markov chain with positive drift $(p>1 / 2), \mathbb{P}\left(T_{1}<\infty\right)=1$. Moreover,

$$
\begin{aligned}
\mathbb{E}\left[\sup _{n \geq 0}\left|Y_{n \wedge T_{1}}\right|\right] & =\mathbb{E}\left[\sup _{n \geq 0}\left|e^{b S_{n \wedge T_{1}}-c\left(n \wedge T_{1}\right)}\right|\right] \\
& =\mathbb{E}\left[\sup _{n \geq 0}\left|e^{b S_{n \wedge T_{1}}}\right|\left|e^{-c\left(n \wedge T_{1}\right)}\right|\right] \\
& \leq \mathbb{E}\left[\sup _{n \geq 0}\left|e^{b S_{n \wedge T_{1}}}\right|\right] .
\end{aligned}
$$

By definition of $T_{1}, S_{n \wedge T_{n}}<1$ for all n. Hence if $b \geq 0$, then $b S_{n \wedge T_{1}}<b$ for all n and it then follows that

$$
\mathbb{E}\left[\sup _{n \geq 0}\left|Y_{n \wedge T_{1}}\right|\right] \leq \mathbb{E}\left[\sup _{n \geq 0}\left|e^{b S_{n \wedge T_{1}}}\right|\right] \leq \mathbb{E}\left[e^{b}\right]=e^{b}<\infty .
$$

We can now apply Theorem 3.1 (p), to get

$$
1=\mathbb{E}\left[Y_{0}\right]=\mathbb{E}\left[Y_{T_{1}}\right]=\mathbb{E}\left[e^{b-c T_{1}}\right]=e^{b} \mathbb{E}\left[e^{-c T_{1}}\right],
$$

hence,

$$
\mathbb{E}\left[e^{-c T_{1}}\right]=e^{-b} .
$$

From c) we know that if Y_{n} is a martingale, then $e^{-c}\left(e^{b} p+e^{-b} q\right)=1$. By solving this equation for e^{-b} we can express $\mathbb{E}\left[e^{-c T_{1}}\right]$ as a function of c. Take $x=e^{-b}$, then we arrive at the following quadratic equation:

$$
q x^{2}-e^{c} x+p=0
$$

who's solutions are given by

$$
x_{ \pm}=\frac{e^{c} \pm \sqrt{e^{2 c}-4 p q}}{2 q} .
$$

Note that the function $f(p)=4 p(1-p)$ is decreasing for $p>1 / 2$ and $f(1 / 2)=1$. Hence, since $e^{2 c}>1$ for $c>0$ it follows that $e^{2 c}-4 p q=$ $e^{2 c}-4 p(1-p)>0$, whenever $c>0$ and $p>1 / 2$.
We now will see which of the two solutions $x_{ \pm}$we need. Since $x=e^{-b}$ and we need $b \geq 0$ we then must have $x \leq 1$. Because $q<1 / 2$, there exists a $k>2$ such that $k q>1$. If we take $c=\ln (k q)>0$ then

$$
x_{+}=\frac{k q+\sqrt{k q-4 p q}}{2 q}>1,
$$

hence

$$
\mathbb{E}\left[e^{-c T_{1}}\right]=e^{-b}=x_{-}=\frac{e^{c}-\sqrt{e^{2 c}-4 p q}}{2 q}
$$

Problem 4

a) i) Let $\{X(t), t \geq 0\}$ be a stationary Gaussian process. Then, for all $t \geq 0$, $X(t)$ and $X(0)$ have the same distributions. Hence

$$
\mathbb{E}[X(t)]=\mathbb{E}[X(0)]=\mu<\infty \quad \text { for all } t \geq 0
$$

Let $s, t \geq 0$ with $s \leq t$. Then, using the fact that $X\left(t_{1}\right), X\left(t_{2}\right)$ and $X\left(t_{1}+s\right), X\left(t_{2}+s\right)$ have the same joint distributions for all $t_{1}, t_{2} \geq 0$, we get

$$
\mathbb{E}[X(s) X(t)]=\mathbb{E}[X(0+s) X((t-s)+s)]=\mathbb{E}[X(0) X(t-s)]
$$

From this it follows that

$$
\operatorname{Cov}(X(s) X(t))=\mathbb{E}[X(s) X(t)]-\mathbb{E}[X(s)] \mathbb{E}[X(t)]=\mathbb{E}[X(0) X(t-s)]-c^{2}
$$

which proves that $\operatorname{Cov}(X(s) X(t))$ only depends on $t-s$.
ii) Let $\{X(t), t \geq 0\}$ be a Gaussian process which satisfies the given properties and take $s, t_{1}, \ldots, t_{n} \geq 0$. The joint density function $f(\vec{x})$ of $X\left(t_{1}\right), \ldots, X\left(t_{n}\right)$ of a Gaussian process is given by

$$
f(\vec{x})=\frac{1}{\sqrt{(2 \pi)^{n}|\Sigma|}} \exp \left\{-\frac{1}{2}(\vec{x}-\vec{\mu}) \Sigma(\vec{x}-\vec{\mu})^{T}\right\}
$$

where $\vec{\mu}=\left(\mathbb{E}\left[X\left(t_{1}\right)\right], \ldots, \mathbb{E}\left[X\left(t_{n}\right)\right]\right), \Sigma$ is the covariance matrix of $X\left(t_{1}\right), \ldots, X\left(t_{n}\right)$, i.e. $\Sigma_{i j}=\operatorname{Cov}\left(X\left(t_{i}\right) X\left(t_{j}\right)\right)$ and $|\Sigma|$ is it's determinant. Because $\mathbb{E}[X(t)]=c$ for all $t \geq 0$ we get that $\vec{\mu}$ is the constant c vector. Moreover, since $\operatorname{Cov}(X(s) X(t))$ depends only on $t-s$ for $s \leq t$ we get

$$
\operatorname{Cov}\left(X\left(t_{i}+s\right) X\left(t_{j}+s\right)=\operatorname{Cov}\left(X\left(t_{i}\right) X\left(t_{j}\right)\right)=\Sigma_{i j}\right.
$$

This implies that the covariance matrix $\hat{\Sigma}$ of $X\left(t_{1}+s\right), \ldots, X\left(t_{n}+\right.$ $s)$ equals Σ. Therefore, the joint density function $\hat{f}(\vec{x})$ of $X\left(t_{1}+\right.$ $s), \ldots, X\left(t_{n}+s\right)$ equals $f(\vec{x})$ which proves that $X\left(t_{1}\right), \ldots, X\left(t_{n}\right)$ and $X\left(t_{1}+s\right), \ldots, X\left(t_{n}+s\right)$ have the same joint distribution.
b) We first establish the identity in the hint.

$$
\begin{aligned}
Z(t+s) & =e^{-(t+s)} B\left(e^{2(t+s)}\right) \\
& =e^{-(t+s)}\left(B\left(e^{2(t+s)}\right)+B\left(e^{2 t}\right)-B\left(e^{2 t}\right)\right) \\
& =e^{-(t+s)} B\left(e^{2 t}\right)+e^{-(t+s)}\left(B\left(e^{2(t+s)}\right)-B\left(e^{2 t}\right)\right)
\end{aligned}
$$

Now since $B\left(e^{2(t+s)}\right)-B\left(e^{2 t}\right)=\mathcal{N}\left(0, e^{2(t+s)}-e^{2 t}\right)$ it follows that

$$
\begin{aligned}
e^{-(t+s)}\left(B\left(e^{2(t+s)}\right)-B\left(e^{2 t}\right)\right) & =\mathcal{N}\left(0, e^{-2(t+s)}\left(e^{2(t+s)}-e^{2 t}\right)\right) \\
& =\mathcal{N}\left(0,1-e^{-2 s}\right) \\
& =\sqrt{1-e^{-2 s}} \mathcal{N}(0,1)
\end{aligned}
$$

which proves the required identity.
c) We compute the covariance of $Z(t)$ process as follows:

$$
\begin{aligned}
\operatorname{Cov}\left(e^{-t} B\left(e^{2 t}\right), e^{-s} B\left(e^{2 s}\right)\right) & =e^{-t} e^{-s} \operatorname{Cov}\left(B\left(e^{2 t}\right), B\left(e^{2 s}\right)\right) \\
& =e^{-t} e^{-s} \min e^{2 t}, e^{2 s}=e^{|t-s|}
\end{aligned}
$$

d) Firstly, we showed in c) that the covariance of the $Z(t)$ process depends only on $t-s$.
Secondly,

$$
\mathbb{E}[Z(t])=\mathbb{E}\left[e^{-t} B\left(e^{2 t}\right)\right]=0<\infty
$$

where in the last equality we used that $B\left(e^{2 t}\right)$ is B.M. with mean 0 .
It follows now from a) that $Z(t)$ is a stationary Gaussian process.

