Problem 1

First we observe that the process described here is a renewal process, since the
lifetimes of the machines are independent of each other. The arrivals in this
process correspond to the arrivals of a new machine or, equivalently, the break
down of the current machine.

a) If we condition the number of arrivals N(¢) on the first arrival then because
the renewal process starts again after the first arrival and does not depend
on this arrival we get

0, ifoe >t
E[N(#)|[X1 ==] = .

1+E[N({t—2)] ifz<t.
Combining this we the law of total probability we get

m(t) = E[N(t)]

_ /ODOE[N(t)Xl — 2] dF(x)

/t1+E[N(tx)]dF(l’)
0

= P+ [ mit—a)iF ().

b) Consider a Renewal Process for which the expected cost incurred per unit
time is determined according to:

E [Cost per cycle]
E [Cycle length]

Now, the length of a cycle is the time period a machine is functioning. There-
fore, the expected time of the cycle is p. The expected cost per cycle is the
cost of getting a new machine, ¢; and the maintenance cost per time unit of
functionality multiplied by the expected length of the functionality, which is
caopi. Thus,

E[Cost per cycle]  c1 + cop

E[Cycle length] —  u

c) We will apply the Renewal theorem to E [Y(¢)]. For this we need to show
that this satisfies the renewal equation. For this we again condition on the
first arrival and use the renewal argument. This gives us

T —t ft<z

E[Y(t)|X: =x] = {]E [Y(t—2)] ift>

and hence



Therefore, E [Y (¢)] satisfies the renewal equation with a(t) = [, (z—t)dF (z).
In order to apply the Renewal Theorem we first need to show that fo |a )|dt <

/OOO |a(t)|dt:/ooo a(t)dt
:/OO /oo(x—t)dF(w)dt
/ / (« — t)dtdF ()

—/0 §x2dF( x)

1
= 5(02+u2) < 00

Now by the Renewal Theorem we get

lim E [V (£)] = - /OO a(t)dt =

t—o00 o)

L
2u

d) For all ¢t > 0, we have

E[Y(t)] = E[Sn(y1] —
— JE[N(t) + 1] — ¢
=pE[N@)] +p—t

= pum(t) + p —t.
Now, when T is large enough we have E [Y7] = % Hence, using the
above equation,
1 2402
m(T) ~ —(T + )—1.
I 2p

Problem 2

a) To show that Z,, is a martingale, we need to check:

i) E[|Z,]] < m < oo, since the state space is bounded from above by m.

ii) First observe that if Z, = 0 or Z,, = m then p;; = 0 for j # 0,
Jj # m, respectively. Hence, in this case, we get E[Z,11|Z,] = Z,.
Now, suppose that 0 < Z,, < m. Then



b)

Take k =7 — 1.

— m(m—k—1Yk+1)! \ m m
m—1 Y k m—k—1
= (m 1)' é 1 é Zn
(m—1-Fk)k' \m m
k=0
1

Z\""
:(”+1—”> Zn =2y,
m m

Define the following stopping time:
T =min{Z, =0 or Z, = m}.

Then, since Z,, is a Markov chain with absorbing states 0 and m, it follows
that E[T] < co. Moreover, E|[|Z,1+1 — Z,||Zo, ..., Zn] < m for all n because
the state space is bounded from above by m. Therefore we can apply Corol-
lary 3.1 (p260) from which it follows that

E [ZT] =K [Zo] = Z0- (1)

Now denote by vy the probability that state 0 is achieved before state m.
Then,
E[Zr] =v90+ (1 —vg)m = (1 — vg)m.

Plugging this into equation (1), we get

1}0:1—*.
m

Since Z, is a martingale, it is also a submartingale. Additionally, using
again the fact that the state space is bounded, sup,,~q E[|X,|] < m < occ.
Hence, by the Martingale Convergence Theorem 5.1(a) (p278), there exists
a random variable Z such that

P(lim Z, = Zo) = 1.

n—oo

Because Z,, is an absorbing Markov chain with absorbing states 0 and m,
we either end in state 0 with probability vg = 1 — 22 or in state m with
probability 2¢. Therefore it follows that

P(Z=0)=1-=2 and P(Z=m)= -2,
m m

which completely determines the distribution of Z.



Problem 3

a)

First observe that E[X;] = 0 and E [X?] =1 for all i. For the expectation
we then have

E[|M,[| = E[|S2 — nl] E[|S2] +n] <E[nX?] +n] = 2n < .
Furthermore,

E [My11|My] = E [Mp41]Sn]
— E [(S + Xos1)2 — (n+1)[S,]
=852 —n+28,E[Xp1] +E[X72 4] -1
=52 —n=M,,

which completes the proof that M, is a martingale.

Since T bounds the state space, it follows that X, is a positive recurrent
Markov chain, which implies that the hitting of each state from any other
state has finite expectation, hence E [T] < oo. Moreover, since for all n < T,
|Sn| < a we have

E [an+1 - MnHSOv i ~aSn]

=E[|S},;— (n+1)—(S2—n)|So,...,Sn]

=E [|2Xn415, + X711 —1]|S0, .-, 5]
<E[12X,4150[S0, - - -, Sn] + E [| Xnt1|*[So, - .., Sn] + 1
= 2F | Xn41]Snl|So, - - -, Sn] + 2

= 2|8, |E (| Xns1l[So, - -+, Sn] +2

=2(|Sp| +1) < 2(a+1) < .

Hence we can apply Corollary 3.1 (p260), from which we get that
0=E[My] =E[Mr]=a*-E[T],

which in turn implies that E [T] = a2.

For Y, to be a martingale, it needs to satisfy the following two conditions:

i) E[|Y,|] < oo for all n, and
i) E[Y,41|Ys] =Y, for all n.

The first condition follows, for all finite b and ¢, from the observation that
Yo =1 and for n > 1,

E[[Yal] =



For the second condition we need that
Yo = E[YasiVa]
—F {6bsn+17c(n+1)|yn} —Y,e R [ebxnﬂ]
=Y,e ¢(ebp + e Pq).
Hence e™¢ (peb + qe‘b) =1

Suppose that Y;, is a martingale then, because Y, is a Markov chain with
positive drift (p > 1/2), P (11 < oo) = 1. Moreover,

E [sup |YnAT1|} =E |suple
n>0

bSnary —c(nATh) |:|
Ln>0

—F sup |6bSnAT1 ||e—c(n/\T1) |:|
Ln>0

< E [sup |ebSnn 11 @ .
L n>0

By definition of T1, Suar, < 1 for all n. Hence if b > 0, then bS, A7, < b for
all n and it then follows that

E [sup Yn/\ﬂ@ <E {sup |bSnnTy ] <E [eb} = e’ < .
n>0 n>0

We can now apply Theorem 3.1 (p), to get
1=E[Yo] =E[Yr,] =E [e""T"] = ¢’E [e*""],
hence,

E [e_CTl] =e b,

From c) we know that if Y,, is a martingale, then e~¢(e’p + e~ %¢) = 1. By
solving this equation for e~® we can express E [e‘CTl] as a function of c.

Take x = e~?, then we arrive at the following quadratic equation:
g’ — ez +p=0,
who’s solutions are given by
ec 4 \/e2¢ — 4dpq
2q '

Note that the function f(p) = 4p(1 — p) is decreasing for p > 1/2 and
f(1/2) = 1. Hence, since €2¢ > 1 for ¢ > 0 it follows that e%¢ — dpq =
e?¢ — 4p(1 — p) > 0, whenever ¢ > 0 and p > 1/2.

r4+ =

We now will see which of the two solutions z4 we need. Since z = e~ and

we need b > 0 we then must have z < 1. Because ¢ < 1/2, there exists a
k > 2 such that kq > 1. If we take ¢ = In(kg) > 0 then

_ kq+vkq—4pq 1
x+—T>7

hence

_ 2c
b e e

2q

—4pq



Problem 4

a) 1) Let {X(t),t > 0} be a stationary Gaussian process. Then, for all ¢t > 0,
X(t) and X (0) have the same distributions. Hence

EXH]=E[X(0)]=p<oo forallt>0.

Let s,t > 0 with s < ¢t. Then, using the fact that X (¢1), X (¢2) and
X (t1 + 8), X(t2 + s) have the same joint distributions for all ¢,y > 0,
we get

EX(8)X#)]=E[X(0+s)X((t—s)+s)]=E[X(0)X(t—s)].
From this it follows that
Cov(X ()X (1)) = E[X ()X (1)]-E[X(s)| E[X (1)] = E[X(0)X (t — 5)]—¢?

which proves that Cov(X (s)X(¢)) only depends on t — s.

ii) Let {X(t),t > 0} be a Gaussian process which satisfies the given prop-
erties and take s,t1,...,t, > 0. The joint density function f(&) of
X(t1),...,X(t,) of a Gaussian process is given by

P S ex —lf—_' T—j
1) = s e { <50 - R - |

where i = (E[X(t1)],...,E[X(tn)]), ¥ is the covariance matrix of
X(t1),...,X(tn), e. X;; = Cov(X(¢;)X(¢;)) and |X] is it’s determi-
nant. Because E [X (t)] = ¢ for all ¢ > 0 we get that [ is the constant c
vector. Moreover, since Cov(X (s)X (t)) depends only on t — s for s < ¢
we get

Cov(X (t; + 5) X (t; + 5) = Cov(X (t;) X (t;)) = 4.

This implies that the covariance matrix ¥ of X (t; + s),..., X (tn, +
s) equals 3. Therefore, the joint density function f(a_s') of X(t1 +
8)y..., X(tn + s) equals f(&) which proves that X (¢1),...,X(t,) and
X(t1 4 8),..., X (tn + s) have the same joint distribution.

b) We first establish the identity in the hint.
Z(t+ s) = e"tF) B(2(t+3)
— e—(t+s) (B(eQ(t+s)) —|—B(€2t) _ B(e%))
_ e—(t+s)B(e2t) 1o (tts) (3(62(t+s)) _ B(e%)) .
Now since B(e2(t+9)) — B(e?) = N(0, e2(t+5) — ¢2t) it follows that
6—(t+s) (B(eQ(t+s)) _ B(G%)) :N(0,6_2(t+5)(62(t+s) _ e2t))
=N(0,1—e%)
=v1—-e"2N(0,1),

which proves the required identity.



c) We compute the covariance of Z(t) process as follows:

Cov(e 'B(e*),e *B(e*)) = e 'e *Cov(B(e*"), B(e**))
= e e * mine?, ? = el

d) Firstly, we showed in ¢) that the covariance of the Z(t) process depends only
ont—s.

Secondly,
E[Z(t]) =E [e "B(e*")] =0 < oo,
where in the last equality we used that B(e?!) is B.M. with mean 0.

It follows now from a) that Z(t) is a stationary Gaussian process.



