
Problem 1

First we observe that the process described here is a renewal process, since the
lifetimes of the machines are independent of each other. The arrivals in this
process correspond to the arrivals of a new machine or, equivalently, the break
down of the current machine.

a) If we condition the number of arrivals N(t) on the first arrival then because
the renewal process starts again after the first arrival and does not depend
on this arrival we get

E [N(t)|X1 = x] =

{
0, if x > t

1 + E [N(t− x)] if x ≤ t.

Combining this we the law of total probability we get

m(t) = E [N(t)]

=

∫ ∞
0

E [N(t)|X1 = x] dF (x)

=

∫ t

0

1 + E [N(t− x)] dF (x)

= F (t) +

∫ t

0

m(t− x)dF (x).

b) Consider a Renewal Process for which the expected cost incurred per unit
time is determined according to:

E [Cost per cycle]

E [Cycle length]

Now, the length of a cycle is the time period a machine is functioning. There-
fore, the expected time of the cycle is µ. The expected cost per cycle is the
cost of getting a new machine, c1 and the maintenance cost per time unit of
functionality multiplied by the expected length of the functionality, which is
c2µ. Thus,

E [Cost per cycle]

E [Cycle length]
=
c1 + c2µ

µ
.

c) We will apply the Renewal theorem to E [Y (t)]. For this we need to show
that this satisfies the renewal equation. For this we again condition on the
first arrival and use the renewal argument. This gives us

E [Y (t)|X1 = x] =

{
x− t if t ≤ x
E [Y (t− x)] if t > x.

and hence

E [Y (t)] =

∫ ∞
0

E [Y (t)|X1 = x] dF (x) =

∫ ∞
t

(x−t)dF (x)+

∫ t

0

E [Y (t− x)] dF (x).
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Therefore, E [Y (t)] satisfies the renewal equation with a(t) =
∫∞
t

(x−t)dF (x).

In order to apply the Renewal Theorem we first need to show that
∫∞
0
|a(t)|dt <

∞, ∫ ∞
0

|a(t)|dt =

∫ ∞
0

a(t)dt

=

∫ ∞
0

∫ ∞
t

(x− t)dF (x)dt

=

∫ ∞
0

∫ x

0

(x− t)dtdF (x)

=

∫ ∞
0

1

2
x2dF (x)

=
1

2
(σ2 + µ2) <∞.

Now by the Renewal Theorem we get

lim
t→∞

E [Y (t)] =
1

µ

∫ ∞
0

a(t)dt =
µ2 + σ2

2µ
.

d) For all t ≥ 0, we have

E [Y (t)] = E
[
SN(t)+1

]
− t

= µE [N(t) + 1]− t
= µE [N(t)] + µ− t
= µm(t) + µ− t.

Now, when T is large enough we have E [YT ] ≈ µ2+σ2

2µ . Hence, using the
above equation,

m(T ) ≈ 1

µ
(T +

µ2 + σ2

2µ
)− 1.

Problem 2

a) To show that Zn is a martingale, we need to check:

i) E [|Zn|] ≤ m ≤ ∞, since the state space is bounded from above by m.

ii) First observe that if Zn = 0 or Zn = m then pij = 0 for j 6= 0,
j 6= m, respectively. Hence, in this case, we get E [Zn+1|Zn] = Zn.
Now, suppose that 0 < Zn < m. Then

E [Zn+1|Zn] =

m∑
j=0

PZnj j

=

m∑
j=0

m!

(m− j)!j!

(
Zn
m

)j (
1− Zn

m

)m−j
j

=

m∑
j=1

m!

(m− j)!j!

(
Zn
m

)j−1(
1− Zn

m

)m−j
j
Zn
m
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Take k = j − 1.

=

m−1∑
k=0

m!(k + 1)

m(m− k − 1)!(k + 1)!

(
Zn
m

)k (
1− Zn

m

)m−k−1
Zn

=

m−1∑
k=0

(m− 1)!

(m− 1− k)!k!

(
Zn
m

)k (
1− Zn

m

)m−k−1
Zn

=

(
Zn
m

+ 1− Zn
m

)m−1
Zn = Zn

b) Define the following stopping time:

T = min
n
{Zn = 0 or Zn = m}.

Then, since Zn is a Markov chain with absorbing states 0 and m, it follows
that E [T ] < ∞. Moreover, E [|Zn+1 − Zn||Z0, ..., Zn] ≤ m for all n because
the state space is bounded from above by m. Therefore we can apply Corol-
lary 3.1 (p260) from which it follows that

E [ZT ] = E [Z0] = z0. (1)

Now denote by v0 the probability that state 0 is achieved before state m.
Then,

E [ZT ] = v0 0 + (1− v0)m = (1− v0)m.

Plugging this into equation (1), we get

v0 = 1− z0
m
.

c) Since Zn is a martingale, it is also a submartingale. Additionally, using
again the fact that the state space is bounded, supn≥0 E [|Xn|] ≤ m < ∞.
Hence, by the Martingale Convergence Theorem 5.1(a) (p278), there exists
a random variable Z such that

P
(

lim
n→∞

Zn = Z∞

)
= 1.

Because Zn is an absorbing Markov chain with absorbing states 0 and m,
we either end in state 0 with probability v0 = 1 − z0

m or in state m with
probability z0

m . Therefore it follows that

P (Z = 0) = 1− z0
m

and P (Z = m) =
z0
m
,

which completely determines the distribution of Z.
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Problem 3

a) First observe that E [Xi] = 0 and E
[
X2
i

]
= 1 for all i. For the expectation

we then have

E [|Mn|] = E
[
|S2
n − n|

]
≤ E

[
|S2
n|+ n

]
≤ E

[
n|X2

i |+ n
]

= 2n <∞.

Furthermore,

E [Mn+1|Mn] = E [Mn+1|Sn]

= E
[
(Sn +Xn+1)2 − (n+ 1)|Sn

]
= S2

n − n+ 2SnE [Xn+1] + E
[
X2
n+1

]
− 1

= S2
n − n = Mn,

which completes the proof that Mn is a martingale.

b) Since T bounds the state space, it follows that Xn is a positive recurrent
Markov chain, which implies that the hitting of each state from any other
state has finite expectation, hence E [T ] <∞. Moreover, since for all n < T ,
|Sn| < a we have

E [|Mn+1 −Mn||S0, . . . , Sn]

= E
[
|S2
n+1 − (n+ 1)− (S2

n − n)|S0, . . . , Sn
]

= E
[
|2Xn+1Sn +X2

n+1 − 1||S0, . . . , Sn
]

≤ E [|2Xn+1Sn||S0, . . . , Sn] + E
[
|Xn+1|2|S0, . . . , Sn

]
+ 1

= 2E [|Xn+1||Sn||S0, . . . , Sn] + 2

= 2|Sn|E [|Xn+1||S0, . . . , Sn] + 2

= 2(|Sn|+ 1) < 2(a+ 1) <∞.

Hence we can apply Corollary 3.1 (p260), from which we get that

0 = E [M0] = E [MT ] = a2 − E [T ] ,

which in turn implies that E [T ] = a2.

c) For Yn to be a martingale, it needs to satisfy the following two conditions:

i) E [|Yn|] ≤ ∞ for all n, and

ii) E [Yn+1|Yn] = Yn for all n.

The first condition follows, for all finite b and c, from the observation that
Y0 = 1 and for n > 1,

E [|Yn|] = E
[
|ebSn−cn|

]
= E

[
ebSn−cn

]
= E

[
eb

∑
i=1Xie−cn

]
= E

[
ebXi

]n
e−cn

= e−cn
(
peb + qe−b

)n
<∞.
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For the second condition we need that

Yn = E [Yn+1|Yn]

= E
[
ebSn+1−c(n+1)|Yn

]
= Yne

−cE
[
ebXn+1

]
= Yne

−c(ebp+ e−bq).

Hence e−c
(
peb + qe−b

)
= 1.

d) Suppose that Yn is a martingale then, because Yn is a Markov chain with
positive drift (p > 1/2), P (T1 <∞) = 1. Moreover,

E
[
sup
n≥0
|Yn∧T1

|
]

= E
[
sup
n≥0
|ebSn∧T1

−c(n∧T1)|
]

= E
[
sup
n≥0
|ebSn∧T1 ||e−c(n∧T1)|

]
≤ E

[
sup
n≥0
|ebSn∧T1 |

]
.

By definition of T1, Sn∧Tn
< 1 for all n. Hence if b ≥ 0, then bSn∧T1

< b for
all n and it then follows that

E
[
sup
n≥0
|Yn∧T1

|
]
≤ E

[
sup
n≥0
|ebSn∧T1 |

]
≤ E

[
eb
]

= eb <∞.

We can now apply Theorem 3.1 (p), to get

1 = E [Y0] = E [YT1 ] = E
[
eb−cT1

]
= ebE

[
e−cT1

]
,

hence,
E
[
e−cT1

]
= e−b.

From c) we know that if Yn is a martingale, then e−c(ebp + e−bq) = 1. By
solving this equation for e−b we can express E

[
e−cT1

]
as a function of c.

Take x = e−b, then we arrive at the following quadratic equation:

qx2 − ecx+ p = 0,

who’s solutions are given by

x± =
ec ±

√
e2c − 4pq

2q
.

Note that the function f(p) = 4p(1 − p) is decreasing for p > 1/2 and
f(1/2) = 1. Hence, since e2c > 1 for c > 0 it follows that e2c − 4pq =
e2c − 4p(1− p) > 0, whenever c > 0 and p > 1/2.

We now will see which of the two solutions x± we need. Since x = e−b and
we need b ≥ 0 we then must have x ≤ 1. Because q < 1/2, there exists a
k > 2 such that kq > 1. If we take c = ln(kq) > 0 then

x+ =
kq +

√
kq − 4pq

2q
> 1,

hence

E
[
e−cT1

]
= e−b = x− =

ec −
√
e2c − 4pq

2q
.
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Problem 4

a) i) Let {X(t), t ≥ 0} be a stationary Gaussian process. Then, for all t ≥ 0,
X(t) and X(0) have the same distributions. Hence

E [X(t)] = E [X(0)] = µ <∞ for all t ≥ 0.

Let s, t ≥ 0 with s ≤ t. Then, using the fact that X(t1), X(t2) and
X(t1 + s), X(t2 + s) have the same joint distributions for all t1, t2 ≥ 0,
we get

E [X(s)X(t)] = E [X(0 + s)X((t− s) + s)] = E [X(0)X(t− s)] .

From this it follows that

Cov(X(s)X(t)) = E [X(s)X(t)]−E [X(s)]E [X(t)] = E [X(0)X(t− s)]−c2

which proves that Cov(X(s)X(t)) only depends on t− s.
ii) Let {X(t), t ≥ 0} be a Gaussian process which satisfies the given prop-

erties and take s, t1, . . . , tn ≥ 0. The joint density function f(~x) of
X(t1), . . . , X(tn) of a Gaussian process is given by

f(~x) =
1√

(2π)n|Σ|
exp

{
−1

2
(~x− ~µ)Σ(~x− ~µ)T

}
where ~µ = (E [X(t1)] , . . . ,E [X(tn)]), Σ is the covariance matrix of
X(t1), . . . , X(tn), i.e. Σij = Cov(X(ti)X(tj)) and |Σ| is it’s determi-
nant. Because E [X(t)] = c for all t ≥ 0 we get that ~µ is the constant c
vector. Moreover, since Cov(X(s)X(t)) depends only on t− s for s ≤ t
we get

Cov(X(ti + s)X(tj + s) = Cov(X(ti)X(tj)) = Σij .

This implies that the covariance matrix Σ̂ of X(t1 + s), . . . , X(tn +

s) equals Σ. Therefore, the joint density function f̂(~x) of X(t1 +
s), . . . , X(tn + s) equals f(~x) which proves that X(t1), . . . , X(tn) and
X(t1 + s), . . . , X(tn + s) have the same joint distribution.

b) We first establish the identity in the hint.

Z(t+ s) = e−(t+s)B(e2(t+s))

= e−(t+s)
(
B(e2(t+s)) +B(e2t)−B(e2t)

)
= e−(t+s)B(e2t) + e−(t+s)

(
B(e2(t+s))−B(e2t)

)
.

Now since B(e2(t+s))−B(e2t) = N (0, e2(t+s) − e2t) it follows that

e−(t+s)
(
B(e2(t+s))−B(e2t)

)
= N (0, e−2(t+s)(e2(t+s) − e2t))

= N (0, 1− e−2s)

=
√

1− e−2sN (0, 1),

which proves the required identity.
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c) We compute the covariance of Z(t) process as follows:

Cov(e−tB(e2t), e−sB(e2s)) = e−te−sCov(B(e2t), B(e2s))

= e−te−s min e2t, e2s = e|t−s|

d) Firstly, we showed in c) that the covariance of the Z(t) process depends only
on t− s.
Secondly,

E [Z(t]) = E
[
e−tB(e2t)

]
= 0 <∞,

where in the last equality we used that B(e2t) is B.M. with mean 0.

It follows now from a) that Z(t) is a stationary Gaussian process.
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