191531750 Stochastic Processes Date: 3 February 2023 13:45-16:45

In all answers: motivate your answer. When derivation is required, you must provide the derivation. This exam consists of 7 problems. The total number of points is 36.

Good luck!

1. Consider a renewal process, where X_1, X_2, \ldots are i.i.d. interarrival times with non-arithmetic distribution $F(\cdot)$. Let γ_t be the excess life of the process at time t and δ_t the age of the process at time t.

[3 pt] For x, s > 0, express

$$\mathbb{P}(\gamma_t > x \mid \delta_{t+x/2} = s),\tag{1}$$

in terms of $F(\cdot)$. (You may assume that t + x/2 > s)

- 2. Consider a renewal process N(t) with i.i.d. inter-renewal times $X_1, X_2, ...$ Suppose that the interarrival distribution F is non-arithmetic with mean $0 < \mu < \infty$.
 - a) (3 pt) Show that

$$Z(t) = \mathbb{P}(\gamma_t > x, \delta_t > y) = (1 - F(t+x))I_{t \in (y,\infty)} + \int_0^t \mathbb{P}(\gamma_{t-x} > x, \delta_{t-x} > y)dF(x)$$

- b) (3 pt) Calculate $\lim_{t\to\infty} Z(t)$.
- 3. (4 pt) The life of a car is a random variable with distribution F(x). The car owner Mr. Brown has a policy of trading in his car either when it fails or reaches the age of A years. Thus, over the years Mr. Brown owns several cars (though only one at the same time), each being immediately replaced by a new car once it is sold.
 Let R(A) denote the resale value of an A-year old car. The resale value of a failed car is C1. Let C2 denote the cost of a new car and suppose that an additional cost C3 is incurred whenever the car fails. Give a formula for the long-run average cost per unit time in terms of F and A and the given cost constants.
- 4. Let $\{X_n\}_{n\geq 0}$ be i.i.d. with $\mathbb{P}(X_i=1)=p$, $\mathbb{P}(X_i=-1)=q$, $\mathbb{P}(X_i=0)=r$ and $X_0=0$, where p+q+r=1 and p>q>0. Let $S_n:=X_1+X_2+\cdots+X_n$. a)[3 pt] For what values of $C\neq 1$ will $M_n:=C^{S_n}$ be a martingale? b)[3 pt] Let $T_k=\min\{i:S_i=k\}$. For a,b>0, compute

$$\mathbb{P}(T_{-a} < T_b).$$

- 5. Consider a bounded martingale $M_n, n \ge 0$, where $|M_n| \le K$ for all n and some K > 0. Let $X_n = \sum_{k=1}^n \frac{1}{k} (M_k M_{k-1})$.
 - a) [2 pt] Show that for $n \ge 1$,

$$X_n = \frac{M_n}{n} - M_0 + \sum_{k=1}^{n-1} \frac{M_k}{k(k+1)}.$$
 (2)

b)[3 pt] Use the martingale convergence theorem to prove that X_n converges with probability one. (Hint: Prove that X_n is a bounded martingale. You may use that $\sum_{k=1}^{\infty} \frac{1}{k(k+1)} < \infty$.)

- 6. a) [2 pt] Give the definition of Brownian Motion
 - b) [3pt] Is C(t) = B(2t) B(t) a Brownian Motion when B(t) is a Brownian Motion?
 - c) [3 pt] Show that for a standard Brownian Motion A(t) and for k > 0,

$$\mathbb{E}[|A(t)|^k] = \frac{(2t)^{k/2}}{\sqrt{\pi}} \Gamma\left(\frac{k+1}{2}\right),\,$$

where $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$.

7. (4 pt) Let $\{X(t), t \ge 0\}$ be a standard Brownian motion and define $\{Y(t), t \in [0, 1]\}$ as

$$Y(t) = X(t) - tX(1),$$

for $t \in [0,1].$ Moreover, define $\{Z(t), t \in [0,1]\}$ as

$$Z(t) = (1+t)Y\left(\frac{t}{1+t}\right),\,$$

for $t \in [0, 1]$.

Prove that $\{Z(t), t \in [0,1]\}$ is a Brownian Motion.