191531750 Stochastic Processes Date: 2 February 2024 13:45-16:45

In all answers: motivate your answer. When derivation is required, you must provide the derivation. This exam consists of 7 problems. The total number of points is 36.

Good luck!

1. Consider a renewal process, where X_1, X_2, \ldots are i.i.d. interarrival times with non-arithmetic distribution $F(\cdot)$. Let γ_t be the excess life of the process at time t and δ_t the age of the process at time t.

[3 pt] For a Poisson Process with intensity λ and x, s > 0, compute

$$\mathbb{P}(\gamma_t > x \mid \delta_{t+x} > s). \tag{1}$$

2. (3 pt) Particles arrive at a counter according to a Poisson process with intensity λ . The jth particle locks the counter for a length Y_j of time, and cancels all locks of its predecessors. Y_1, Y_2, \ldots are i.i.d. with distribution G and independent of the Poisson process. The first particle arrives at the counter at time 0. Let L be the length of the first time interval during which the counter is locked. Show that $H(t) = \mathbb{P}(L > t)$ satisfies

$$e^{-\lambda t}[1-G(t)] + \int_0^t H(t-x)[1-G(x)]\lambda e^{-\lambda x} dx$$

3. Buses arrive at a bus stop according to a renewal process with i.i.d. inter-arrival times X_1, X_2, \ldots (in minutes), with $\mathbb{E}[X_1] < \infty$ and $\mathbb{E}[X_1^2] < \infty$. Some buses are green, the others are red. The probability that an arbitrary bus is red equals p > 0. The color of a bus is independent of the color of the other buses and independent of X_1, X_2, \ldots

a)[3 pt] People arrive with a rate of 1 person per minute to the bus stop. When a bus arrives, all waiting passengers pay $\in 1/p$ if the bus is red and $\in 1/(1-p)$ if the bus is green. What is the average long-run income rate of the bus company? (euro per time unit)

b) [4pt] Let A(t) denote the time that went by since the last bus arrived and B(t) the time until the next bus arrives at time t. Let $J(t) = \int_0^t \min(A(s), B(s)) ds$. By using an appropriate renewal reward process, show that

$$\lim_{t\to\infty}J(t)/t=\frac{\mathbb{E}[X_1^2]}{2\mathbb{E}[X_1]}.$$

- 4. Let X_1, \ldots, X_n be i.i.d. with $\mathbb{P}(X_n = -1) = \mathbb{P}(X_n = 1) = \frac{1}{2}$. Set $S_n = X_0 + \cdots + X_n$.
 - a) (4 pt) Show that $M_n = S_n^3 3nS_n$, is a martingale with respect to X_n .
 - b) [4pt] Fix m > 0, and let T be the first time that the walk hits either 0 or m. Show that, for each $0 < k \le m$, when $\tilde{X}_0 = k$,

$$\mathbb{E}[T \mid \mathbf{X}_T = m] = \frac{m^2 - k^2}{3}.$$

You may assume that the optimal stopping theorem can be applied to M_n .

- 5. Let $\{X_n\}_{n\geq 0}$ be independent random variables with $\mathbb{P}(X_i=-1)=\mathbb{P}(X_i=1)=1/2$. Furthermore, define $M_n=\sum_{i=1}^n X_i/i$.
 - a) [3pt] Show that $\{M_n\}_{n\geq 0}$ is a martingale.
 - b) [3pt] Use the Martingale Convergence Theorem to show that $\{M_n\}_{n\geq 0}$ converges with probability one and in mean square to a random variable M. You may use that $\sum_{i=1}^{\infty} 1/i^2 < \infty$.
- 6. a) [3 pt] Give the definition of Brownian Motion
 - b) [3 pt] Use the reflection principle to derive an expression for $P(\max_{0 \le u \le t} X(u) \le x, a \le X(t) < b)$.
 - c) [3 pt] Let A(t) and B(t) be two independent standard Brownian Motions. Are there constants α,β such that $X(t)=\alpha A(t)+\beta B(t)$ is a standard Brownian motion again? If yes, find all conditions on α and β such that X(t) is a standard Brownian Motion.
 - d) [3 pt] Is $C(t) = Z\sqrt{t}$ a Brownian Motion when $Z \sim \mathcal{N}(0,1)$?