Time Series Analysis (& SI)—191571090

Date:

28-06-2019

Place:

CR-2K

Time:

08:45–11:45 (till 12:30 for students with special rights)

Course coordinator:

G. Meinsma

Allowed aids during test: The first 5 problems are CLOSED BOOK and WITHOUT CALCULTATOR.

Hand in the solution of these 5 before doing problems 6-8.

For problems 6–8 use of lecture notes and calculator IS allowed.

1. **CLOSED BOOK:** The above shows a realization of 200 samples generated with one the following three schemes. Explain which one it is:

•
$$X_t = 0.95X_{t-1} + \epsilon_t$$

•
$$X_t = 1.9X_{t-1} - 0.95X_{t-2} + \epsilon_t$$

•
$$X_t = -1.9X_{t-1} - 0.95X_{t-2} + \epsilon_t$$

- 2. **CLOSED BOOK:** In system identification what is an ARX scheme?
- 3. **CLOSED BOOK:** Consider the MA process

$$X_t = (1 - \frac{1}{2}q^{-2} + \frac{1}{16}q^{-4})\epsilon_t$$

and assume that $\mathbb{E}(\epsilon_t) = 0$ and $var(\epsilon_t) = 1$.

- (a) Show that the scheme is invertible.
- (b) Compute the covariance function of X_t .
- (c) Determine the one-step ahead predictor $\hat{X}_{t|t-1}$ of X_t .
- (d) Is the two-step ahead predictor $\hat{X}_{t|t-2}$ of X_t the same as the one-step ahead predictor?
- (e) How does the one-step ahead predictor change if $\mathbb{E}(\epsilon_t) = 2$?
- 4. CLOSED BOOK: Suppose all we know about spectral densities is that (a) the average of $\phi_X(\omega)$ over $\omega \in [0,\pi]$ equals the power of X_t , and (b) that $\phi_X(\omega) = |H(e^{i\omega})|^2 \phi_U(\omega)$ if $X_t =$ $H(q)U_t$. Show that this alone already implies that $\phi_X(\omega)$ is real and nonnegative for all frequencies $\omega \in [0, \pi]$.
- 5. **CLOSED BOOK:** Suppose $X_0, ..., X_{N-1}$ are independent and that they are uniformly distributed on $[0,\theta]$ for some $\theta > 0$.
 - (a) Show that the joint density function is $f(x_1,...,x_N) = \begin{cases} \frac{1}{\theta^N} & \text{if all } x_i \in [0,\theta] \\ 0 & \text{elsewhere} \end{cases}$
 - (b) Show that the maximum likelihood estimator of θ is $\hat{\theta} = \max_{t=0,\dots,N-1} X_t$.

6. **OPEN BOOK:** We consider estimation of AR models on the basis of $X_0, ..., X_{N-1}$. Several applications exploit/assume the property that AR models $A(q)X_t = \epsilon_t$ computed with least squares make ϵ_t "close to white". We explore this for the case that

$$X_t = (1 - b q^{-1}) \eta_t$$
 with $|b| < 1$,

and η_t white noise with mean zero and $var(\eta_t) = \sigma_n^2$.

(a) Suppose we try to model this X_t with an AR(1) scheme $X_t = aX_{t-1} + \epsilon_t$. Determine the a that minimizes

$$\mathbb{E}(\epsilon_t^2)$$

and show that $\mathbb{E}(\epsilon_t^2) \ge \sigma_n^2$.

- (b) Now model this X_t with an AR(n) scheme $(1 a_1 \operatorname{q}^{-1} \dots a_n \operatorname{q}^{-n}) X_t = \varepsilon_t$. Show that $\mathbb{E}(\varepsilon_t^2) \ge \sigma_\eta^2$ for every possible a_1, \dots, a_n .
- (c) Next define $A_{\infty}(\mathbf{q}) = \frac{1}{B(\mathbf{q})} = (1 + b\mathbf{q}^{-1} + b^2\mathbf{q}^{-2} + b^3\mathbf{q}^{-3} + \cdots)$ and then truncate this to finite order n:

$$A_n(\mathbf{q}) = 1 + b \mathbf{q}^{-1} + b^2 \mathbf{q}^{-2} + \dots + b^n \mathbf{q}^{-n}$$
.

Let $A_n(q)X_t = \epsilon_t$. Show that $\lim_{n\to\infty} \mathbb{E}(\epsilon_t^2) = \sigma_{\eta}^2$.

- (d) Argue that for the above $A_n(\mathbf{q})$ we have that " ϵ_t becomes more and more white as $n \to \infty$."
- (e) Does the above easily imply that AR(n) models found through standard least squares on $X_0, ..., X_{N-1}$ for the above X_t makes " ε_t become more and more white as $n \to \infty$ and $N := 100 n \to \infty$ "? [Keep your answer qualitative and short.]
- 7. **OPEN BOOK:** Consider

$$X_t = (1 + b q^{-1})\epsilon_t, \qquad b \in \mathbb{R},$$

with ϵ_t iid zero mean and normally distributed. How large does N need to be to ensure that the standard deviation of $\hat{\gamma}_N(0)$ (estimated from $X_0, ..., X_{N-1}$) is at most 0.1 times $\gamma(0)$? [Your N must be valid for every possible b but N is not allowed to depend on b.]

- 8. **OPEN BOOK System identification:** Consider $Y_t = \sum_{m=-\infty}^{\infty} h_m U_{t-m} + V_t$ and suppose U_t and V_t uncorrelated WSS processes.
 - (a) Prove that $\gamma_y(\tau) = \gamma_z(\tau) + \gamma_v(\tau)$ where $Z_t = \sum_{m=-\infty}^{\infty} h_m U_{t-m}$.
 - (b) If the coherence spectrum $K_{yu}(\omega) = 1/4$ for all frequencies ω , which fraction of the power of y is due to v?
 - (c) If both U_t and V_t are white noise, can $|K_{vu}(\hat{e}^{i\omega})|$ then exceed $|H(e^{i\omega})|$?

problem:	1	2	3	4	5	6	7	8
points:	2	2	2+2+2+1+2	2	2+2	2+2+2+2	2	2+1+2