Course	:	Time Series Analysis
Code	:	157109
Date	:	Friday, November 9, 2007
Time	:	09.00 - 12.00
Place	:	WA-220

All answers must be motivated.

1. The above plot depicts a realization x_0, \ldots, x_{200} of a stochastic process X_t . It was generated by *one* of the three schemes below with zero mean, unit variance white noise ε_t :

$$X_t = 0.9X_{t-1} + \varepsilon_t, \qquad X_t = -0.9X_{t-1} + \varepsilon_t, \qquad X_t = -0.2X_{t-1} + 10\varepsilon_t.$$

Explain which one the three was used and why the other two are unlikely.

2. Consider the following system

$$3X_t + X_{t-1} = 3\varepsilon_t - \varepsilon_{t-1} \tag{1}$$

with ε_t white noise.

- (a) Is this system stable?
- (b) Is this system invertible?
- (c) Is the system wide-sense stationary?
- (d) Determine its spectral density.

3. Suppose X_1, \ldots, X_N are mutually independent stochastic variables with the same probability density function

$$f(x) = \begin{cases} \frac{4x}{\lambda^2} \exp(-2x/\lambda), & \text{if } x > 0\\ 0 & \text{if } x < 0. \end{cases}$$
(2)

It is known that $\mathbb{E}X_t = \lambda$, and $\mathbb{E}X_t^2 = \frac{3}{2}\lambda^2$.

- (a) Show that $\operatorname{var}(X_t) = \frac{\lambda^2}{2}$.
- (b) Give the joint probability density of X_1, X_2, \ldots, X_N .
- (c) Determine the maximum likelihood estimator $\hat{\lambda}$ of λ given X_1, \ldots, X_N .
- (d) Is the estimator $\hat{\lambda}$ unbiased?
- (e) Is the estimator $\hat{\lambda}$ efficient?
- 4. In Equation (5.65) the dynamics for the one-step predictor is derived under the assumption that the coefficient b_0 of the polynomial N(q) is one. Find the dynamics of the one-step predictor if this assumption is not satisfied.

Note that h_0 will not be equal to one, but you may assume that all the other assumptions are satisfied.

5. Consider the independent stochastic variables X_1, \ldots, X_N with the same probability density function

$$f(x) = \begin{cases} \frac{1}{2} & \text{if } x \in [\lambda - 1, \lambda + 1] \\ 0 & \text{elsewhere.} \end{cases}$$
(3)

We want to estimate the parameter λ of this process.

- (a) Calculate $\mathbb{E}X_t$.
- (b) Show that $\operatorname{var}(X_t) = \frac{1}{3}$.
- (c) As estimator for λ , we use

$$\hat{\lambda}_N = \frac{1}{N} \sum_{t=1}^N X_t.$$
(4)

Explain this choice.

- (d) Is this estimator biased?
- (e) Calculate the variance of this estimator.
- (f) Is the estimator consistent?

Normering:

1	:	10	2	\mathbf{a}	:	5	3	\mathbf{a}	:	5	4	:	10	5	a	:	5
				b	:	5		b	:	2					b	:	3
				с	:	5		с	:	6					с	:	3
				d	:	5		d	:	6					d	:	4
								е	:	6					е	:	6
															f	:	4

Total: 90 + 10 = 100 points