Code : 157109
Date : Friday, November 9, 2007
Time : 09.00-12.00
Place : WA-220

All answers must be motivated.

1. The above plot depicts a realization x_{0}, \ldots, x_{200} of a stochastic process X_{t}. It was generated by one of the three schemes below with zero mean, unit variance white noise ε_{t} :

$$
X_{t}=0.9 X_{t-1}+\varepsilon_{t}, \quad X_{t}=-0.9 X_{t-1}+\varepsilon_{t}, \quad X_{t}=-0.2 X_{t-1}+10 \varepsilon_{t} .
$$

Explain which one the three was used and why the other two are unlikely.
2. Consider the following system

$$
\begin{equation*}
3 X_{t}+X_{t-1}=3 \varepsilon_{t}-\varepsilon_{t-1} \tag{1}
\end{equation*}
$$

with ε_{t} white noise.
(a) Is this system stable?
(b) Is this system invertible?
(c) Is the system wide-sense stationary?
(d) Determine its spectral density.
3. Suppose X_{1}, \ldots, X_{N} are mutually independent stochastic variables with the same probability density function

$$
f(x)= \begin{cases}\frac{4 x}{\lambda^{2}} \exp (-2 x / \lambda), & \text { if } x>0 \tag{2}\\ 0 & \text { if } x<0\end{cases}
$$

It is known that $\mathbb{E} X_{t}=\lambda$, and $\mathbb{E} X_{t}^{2}=\frac{3}{2} \lambda^{2}$.
(a) Show that $\operatorname{var}\left(X_{t}\right)=\frac{\lambda^{2}}{2}$.
(b) Give the joint probability density of $X_{1}, X_{2}, \ldots, X_{N}$.
(c) Determine the maximum likelihood estimator $\hat{\lambda}$ of λ given X_{1}, \ldots, X_{N}.
(d) Is the estimator $\hat{\lambda}$ unbiased?
(e) Is the estimator $\hat{\lambda}$ efficient?
4. In Equation (5.65) the dynamics for the one-step predictor is derived under the assumption that the coefficient b_{0} of the polynomial $N(q)$ is one. Find the dynamics of the one-step predictor if this assumption is not satisfied.
Note that h_{0} will not be equal to one, but you may assume that all the other assumptions are satisfied.
5. Consider the independent stochastic variables X_{1}, \ldots, X_{N} with the same probability density function

$$
f(x)= \begin{cases}\frac{1}{2} & \text { if } x \in[\lambda-1, \lambda+1] \tag{3}\\ 0 & \text { elsewhere }\end{cases}
$$

We want to estimate the parameter λ of this process.
(a) Calculate $\mathbb{E} X_{t}$.
(b) Show that $\operatorname{var}\left(X_{t}\right)=\frac{1}{3}$.
(c) As estimator for λ, we use

$$
\begin{equation*}
\hat{\lambda}_{N}=\frac{1}{N} \sum_{t=1}^{N} X_{t} \tag{4}
\end{equation*}
$$

Explain this choice.
(d) Is this estimator biased?
(e) Calculate the variance of this estimator.
(f) Is the estimator consistent?

Normering:

1	$:$	10	2	a	$:$	5	3	a	$:$	5	4	$:$	10	5	a	$:$	5
			b	$:$	5		b	$:$	2					b	$:$	3	
			c	$:$	5		c	$:$	6					c	$:$	3	
			d	$:$	5		d	$:$	6					d	$:$	4	
							e	$:$	6					e	$:$	6	
														f	$:$	4	

Total: $90+10=100$ points

