Time Series Analysis (\& SI)—191571090

(Lecture notes are allowed)

Date: 08-11-2013
Place: SP1
Time: 08:45-11:45

1. (a) Consider two random variables $X=\left(X_{1}, X_{2}\right)$. Which of the following four covariance matrices

$$
R_{X}=\left[\begin{array}{cc}
2 & -2 \\
-2 & 4
\end{array}\right], \quad R_{X}=\left[\begin{array}{cc}
5 & -2 \\
-2 & 1
\end{array}\right], \quad R_{X}=\left[\begin{array}{ll}
2 & 2 \\
2 & 4
\end{array}\right], \quad R_{X}=\left[\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right]
$$

is in accordance with the above scatter plot?
(b) If an LTI system \mathscr{H} has peak-to-peak gain 2 then the inverse system \mathscr{H}^{-1} (assuming it exists) has peak-to-peak gain $1 / 2$?
2. Consider the system

$$
y_{t}=\frac{1}{3} y_{t-1}+u_{t} .
$$

(a) Is it asymptotically stable?
(b) Determine the impulse response h
(c) Compute $\|h\|_{1}$
3. Let X_{t} be the $\mathrm{AR}(2)$ process described by $\left(1-a_{1} \mathrm{q}^{-1}-a_{2} \mathrm{q}^{-2}\right) X_{t}=\epsilon_{t}$ and whose covariance function $r(k)$ satisfies $r(0)=3, r(1)=2, r(2)=1$.
(a) Determine a_{1}, a_{2}
(b) Calculate the variance σ_{ϵ}^{2} of the white noise ϵ.
(c) What is $r(3)$?
(d) Suppose we have $N=100$ samples X_{1}, \ldots, X_{N} of this process and that we use it to fit an $\operatorname{AR}(2)$ scheme $\left(1-\hat{a}_{1} \mathrm{q}^{-1}-\hat{a}_{2} \mathrm{q}^{-2}\right) X_{t}=\hat{\epsilon}_{t}$ using least-squares and where we assume that $\mathbb{E} X_{t}=0$. Can you estimate $\operatorname{var}\left(\hat{a}_{1}\right)$ and $\operatorname{var}\left(\hat{a}_{2}\right)$?
4. Consider the system

$$
X_{t}=\frac{1}{3} X_{t-2}+2 \epsilon_{t}+\epsilon_{t-1}
$$

and assume that ϵ_{t} is zero mean white noise and that is has variance 1 .
(a) Is the scheme invertible?
(b) Determine the one-step-ahead predictor scheme
(c) Determine the mean square prediction error $\mathbb{E}\left(X_{t}-\hat{X}_{t \mid t-1}\right)^{2}$
5. Suppose X_{t} is a WSS process with covariance function $r(k)$ and consider the sample mean $\hat{m}_{N}=\left(X_{1}+\cdots+X_{N}\right) / N$.
(a) Determine $\operatorname{cov}\left(\hat{m}_{N+k}, \hat{m}_{N}\right)$ for the case that X_{t} is white noise
(b) Determine $\operatorname{cov}\left(\hat{m}_{N+k}, \hat{m}_{N}\right)$ for the case that $X_{t}=\left(1+b \mathrm{q}^{-1}\right) \epsilon_{t}$ [THIS PROBLEM HAS BEEN DELETED. The math is too nasty.]
(c) Is \hat{m}_{t} WSS if X_{t} is WSS?
6. In Example 6.5.5 the \hat{r}_{N} is computed by inverse Fourier transformation of the periodogram ph . What is the advantage of this over direct computation of \hat{r}_{N} via Equation (6.30)?
7. System Identification. Suppose we have

$$
Y_{t}=\left(c_{0}+c_{1} \mathrm{q}^{-1}\right) U_{t}+V_{t}
$$

and that U_{t}, V_{t} are zero mean WSS and that U and V are uncorrelated processes.
(a) We have measurements $u_{0}, \ldots, u_{N-1}, y_{0}, \ldots, y_{N-1}$. Show that for large N the least squares solution $\hat{\theta}_{N}:=\left(\hat{c}_{0}, \hat{c}_{1}\right)$ satisfies

$$
\left[\begin{array}{l}
r_{Y U}(0) \\
r_{Y U}(1)
\end{array}\right] \approx\left[\begin{array}{ll}
r_{U}(0) & r_{U}(1) \\
r_{U}(1) & r_{U}(0)
\end{array}\right] \hat{\theta}_{N}
$$

with good approximation
(b) Express $r_{Y}(0)$ and $r_{Y U}(0), r_{Y U}(1)$ in terms of r_{U} and r_{V}.
(c) Suppose in addition that V_{t} is white. If the power $\mathbb{E}\left(V_{t}^{2}\right)$ of the noise V_{t} is large then, intuitively, the estimate $\hat{\theta}_{N}:=\left(\hat{c}_{0}, \hat{c}_{1}\right)$ is "less accurate". Argue that nonetheless $\lim _{N \rightarrow \infty} \hat{\theta}_{N}=$ (c_{0}, c_{1}) (using parts (a) and (b) of this exercise.)

problem:	1	2	3	4	5	6	7
points:	$3+2$	$1+2+2$	$3+1+1+3$	$1+2+2$	$2+2+1$	2	$2+2+2$

Exam grade is $1+9 p / p_{\text {max }}$.

1. (a) From the plot we see a negative correlation between X_{1}, X_{2} so $\operatorname{cov}\left(X_{1}, X_{2}\right)<0$. Hence the $(1,2)$ en $(2,1)$ element of R_{X} are <0. The variance in X_{2} is bigger than that of X_{1} so $R_{X}(2,2)>R_{X}(1,1)$. So it must be $R_{X}=\left[\begin{array}{cc}2 & -2 \\ -2 & 4\end{array}\right]$
(b) No: $y_{t}=u_{t}+u_{t-1} / 2$ has $\|h\|_{1}=1+1 / 2$ while its inverse $u_{t}=y_{t}-y_{t-1} / 2+y_{t-2} / 4 \cdots$ has 1 -norm $1+1 / 2+1 / 4+\cdots=2$ and that is not $1 /\|h\|_{1}$.
2. (a) Yes because the zeros of $A(z)=1-1 / 3 z^{-1}$ is $z=1 / 3$ so inside unit circle
(b) by long division of $1 /\left(1-\frac{1}{3} q^{-1}\right)=1+1 / 3 q^{-1}+1 / 3^{2} q^{-2}+1 / 3^{3} q^{-3}+\cdots$
(c) $1+1 / 3+1 / 9+\cdots=1 /(1-1 / 3)=3 / 2$
3. (a) According to Yule-Walker we have

$$
\left[\begin{array}{lll}
3 & 2 & 1 \\
2 & 3 & 2 \\
1 & 2 & 3
\end{array}\right]\left[\begin{array}{c}
1 \\
-a_{1} \\
-a_{2}
\end{array}\right]=\left[\begin{array}{c}
\sigma_{\epsilon}^{2} \\
0 \\
0
\end{array}\right]
$$

which implies

$$
\left[\begin{array}{ccc}
0 & -4 & -8 \\
0 & -1 & -4 \\
1 & 2 & 3
\end{array}\right]\left[\begin{array}{c}
1 \\
-a_{1} \\
-a_{2}
\end{array}\right]=\left[\begin{array}{c}
\sigma_{\epsilon}^{2} \\
0 \\
0
\end{array}\right]
$$

so $a_{1}=-4 a_{2}$ which gives $a_{1}=0.8$ and $a_{2}=-0.2$
(b) and also gives $\sigma_{\epsilon}^{2}=3-2 a_{1}-a_{2}=1.6$
(c) $A(\mathrm{q}) r(\tau)=0$ for $\tau>0$ so $r(3)=a_{1} r(2)+a_{2} r(1)=.4$
(d) In lecture notes: $M=(N-n) / \sigma^{2}\left[\begin{array}{ll}r(0) & r(1) \\ r(1) & r(0)\end{array}\right]=98 / 1.6\left[\begin{array}{ll}3 & 2 \\ 2 & 3\end{array}\right]$ hence $\operatorname{var}\left(\hat{a}_{1}\right)=\operatorname{var}\left(\hat{a}_{1}\right)=1.6 / 98 \times$ $.6=0.0097$
4. (a) (Invertible a la Chapter 2: yes). Invertible a la Chapter 3: also yes because the zero of $B(z)=2+z^{-1}$ is $z_{0}=-1 / 2$ and $\left|z_{0}\right|<1$
(b) $B(\mathrm{q}) / A(\mathrm{q})=2+\left(1+2 / 3 \mathrm{q}^{-1}\right) \mathrm{q}^{-1} / A(\mathrm{q})$ so $B(\mathrm{q}) \hat{X}_{t+1 \mid t}=R(\mathrm{q}) X_{t}$ becomes $\left(2+\mathrm{q}^{-1}\right) \hat{X}_{t+1 \mid t}=$ $\left(1+2 / 3 \mathrm{q}^{-1}\right) X_{t}$.
(c) $e_{t}=h_{0} \epsilon_{t}=2 \epsilon_{t}$ so MSE is $4 \sigma_{\epsilon}^{2}=4$.
5. The centered $\hat{m}_{N}-\mathbb{E} m_{N}$ equals $\left(\tilde{X}_{1}+\cdots+\tilde{X}_{N}\right) / N$ where \tilde{X}_{t} is the centered X_{t}. So without loss of generality assume $\mathbb{E} X_{t}=0$
(a) Suppose first that $k \geq 0$. Then $\operatorname{cov}\left(\hat{m}_{N+k}, \hat{m}_{N}\right)=\mathbb{E}\left(\left(X_{1}+\cdots+X_{N}\right) /(N+k),\left(X_{1}+\cdots+\right.\right.$ $\left.\left.X_{N}\right) / N\right)=\frac{1}{N(N+k)} N \sigma_{X}^{2}=\frac{1}{N+k} \sigma_{X}^{2}$. For $k<0$ (but $N+k>0$) we have $\operatorname{cov}\left(\hat{m}_{N+k}, \hat{m}_{N}\right)=$ $\mathbb{E}\left(\left(X_{1}+\cdots+X_{N+k}\right) /(N+k),\left(X_{1}+\cdots+X_{N+k}\right) / N\right)=\frac{1}{N(N+k)}(N+k) \sigma_{X}^{2}=\frac{1}{N} \sigma_{X}^{2}$.
(b) Gratis=2 (too ugly.)
(c) No. For white noise the $\operatorname{cov}\left(\hat{m}_{t+k}, \hat{m}_{t}\right)$ depends on t so not WSS
6. It is faster: fft takes $O(N \log N)$ and then ifft as well. The other commands require $O(N)$ or less so overall it takes $O(N \log (N))$ while direct computation requires $O\left(N^{2}\right)$.
7. (a) The lecture notes says the the least squares $\hat{\theta}_{N}$ satisfies

$$
\frac{1}{N} F^{\mathrm{T}} Y=\frac{1}{N} F^{\mathrm{T}} F \hat{\theta}_{N}
$$

In our case $n=0$ and $m=2$. This violates the assumption $n \geq m$ made just before Equation (8.35) but we van figure out our F, Y nonetheless:

$$
\underbrace{\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{N-1}
\end{array}\right]}_{Y}=\underbrace{\left[\begin{array}{cc}
u_{1} & u_{0} \\
\vdots & \vdots \\
u_{N-1} & u_{N-2}
\end{array}\right]}_{F} \underbrace{\left[\begin{array}{c}
c_{0} \\
c_{1}
\end{array}\right]}_{\theta_{N}}+\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{N-1}
\end{array}\right]
$$

So $\frac{1}{N} F^{\mathrm{T}} Y=\frac{1}{N} F^{\mathrm{T}} F \hat{\theta}_{N}$ becomes

$$
\frac{1}{N}\left[\begin{array}{ccc}
u_{1} & \cdots & u_{N-1} \\
u_{0} & \cdots & u_{N-2}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{N-1}
\end{array}\right]=\frac{1}{N}\left[\begin{array}{lll}
u_{1} & \cdots & u_{N-1} \\
u_{0} & \cdots & u_{N-2}
\end{array}\right]\left[\begin{array}{cc}
u_{1} & u_{0} \\
\vdots & \vdots \\
u_{N-1} & u_{N-2}
\end{array}\right] \hat{\theta}_{N}
$$

That is

$$
\left[\begin{array}{l}
\frac{u_{1} y_{1}+\cdots u_{N-1} y_{N-1}}{u_{0} y_{1}+\cdots u_{N-2} y_{N-1}} \\
N
\end{array}\right]=\left[\begin{array}{ll}
\frac{u_{1} u_{1}+\cdots u_{N-1} u_{N-1}}{} & \frac{u_{0} u_{1}+\cdots u_{N-2} u_{N-1}}{u_{0} u_{1}+\cdots u_{N-2} u_{N-1}} \\
\frac{u_{1} u_{1}+\cdots u_{N-1}}{N_{N-1}} & N
\end{array}\right] \hat{\theta}_{N}
$$

In expectation (for large N) this is what was asked:

$$
\left[\begin{array}{l}
r_{Y U}(0) \\
r_{Y U}(1)
\end{array}\right]=\left[\begin{array}{ll}
r_{U}(0) & r_{U}(1) \\
r_{U}(1) & r_{U}(0)
\end{array}\right] \hat{\theta}_{N}
$$

(b) The lecture notes says (by the fact that U, V are uncorrelated processes) that $r_{Y}=$ $r_{\left(c_{0}+c_{1} q^{-1}\right) U}+r_{V}$. So

$$
r_{Y}(0)=\left(c_{0}^{2}+c_{1}^{2}\right) r_{U}(0)+2 c_{0} c_{1} r_{U}(1)+r_{V}(0)
$$

and

$$
r_{Y U}(0)=\mathbb{E}\left(c_{0} U_{t}+c_{1} U_{t-1}+V_{t}\right) U_{t}=c_{0} r_{U}(0)+c_{1} r_{U}(1)
$$

and

$$
r_{Y U}(1)=\mathbb{E}\left(c_{0} U_{t+1}+c_{1} U_{t}+V_{t+1}\right) U_{t}=c_{0} r_{U}(1)+c_{1} r_{U}(0)
$$

(c) Using the $r_{Y U}(0), r_{Y U}(1)$ from (b) the equation in (a) becomes

$$
\left[\begin{array}{l}
c_{0} r_{U}(0)+c_{1} r_{U}(1) \\
c_{0} r_{U}(1)+c_{1} r_{U}(0)
\end{array}\right] \approx\left[\begin{array}{ll}
r_{U}(0) & r_{U}(1) \\
r_{U}(1) & r_{U}(0)
\end{array}\right] \hat{\theta}_{N}
$$

That is $\hat{\theta}_{N}=\left(c_{1}, c_{2}\right) .$.

