UNIVERSITEIT TWENTE

Faculteit Elektrotechniek, Wiskunde en Informatica

Exam Random Signals and Filtering (201200135) on Monday July 1, 2013, 13.45-16.45 hours.
The solutions of the exercises need to be clearly formulated and written in a well-structured manner. Moreover, you always need to present a derivation or arguments to support your answer.
You can use one single-sided A4 page of handwritten notes with your exam.

1. Consider $\Omega=\mathbb{R}$ and let \mathcal{P} be such that

$$
\mathcal{P}((n, n+1))=0
$$

for all integers n. Show that

$$
\mathcal{P}([a, b])=0
$$

cannot be a continuous function for all $a, b \in \mathbb{R}$.
2. Consider the following nonlinear system:

$$
\begin{aligned}
X_{k+1} & =W_{k} \cdot \sqrt{X_{k}} \\
Y_{k} & =X_{k} \cdot \sqrt{V_{k}}
\end{aligned}
$$

where X_{0}, V_{k} and W_{j} are mutually independent for all k and j, and all have a uniform distribution on the interval $[0,1]$. Moreover, the noise sequences $\left\{W_{k}\right\}$ and $\left\{V_{k}\right\}$ are assumed to be white.
a) Determine the density function associated to the stochastic variable X_{1}
b) Determine $E\left[X_{0} \mid Y_{0}\right]$
c) Determine $E\left[X_{2} \mid Y_{1}\right]$.
3. Consider the following nonlinear system:

$$
\begin{aligned}
X_{k+1} & =X_{k}^{2}+W_{k} \\
Y_{k} & =X_{k}+V_{k}
\end{aligned}
$$

where X_{0}, V_{k} and W_{j} are mutually independent for all k and j and all have a Gaussian distribution with mean 0 and variance 1 . Moreover, the noise sequences $\left\{W_{k}\right\}$ and $\left\{V_{k}\right\}$ are assumed to be white.
a) Determine $E_{\text {lin }}\left[X_{1} \mid Y_{0}\right]$
b) Determine $E_{\operatorname{lin}}\left[X_{1} \mid Y_{0}, Y_{1}\right]$
4. Consider the following linear system:

$$
\begin{aligned}
X_{k+1} & =X_{k}+W_{k} \\
Y_{k} & =X_{k}+V_{k}
\end{aligned}
$$

where X_{0}, V_{k} and W_{k} are mutually independent and all have a Gaussian distribution with mean zero and variance 1. Moreover, the noise sequences $\left\{W_{k}\right\}$ and $\left\{V_{k}\right\}$ are assumed to be white.
We are applying a particle filter without resampling where we recursively update our particles according to:

$$
\pi\left(x_{k} \mid x_{k-1}^{i}, y_{k}\right)=p\left(x_{k} \mid y_{k}\right)
$$

a) Clarify how you could implement the updating of particles in a program such as Matlab (the algorithm not the precise Matlab code)
b) Compute $\operatorname{var}\left(X_{k}^{i}-X_{k}\right)$.
c) Argue whether the performance of this particle filter would improve with resampling

You can earn the following number of points for each exercise:
Exercise 1. 2 points Exercise 2. 5 points
Exercise 4. 5 points Exercise 5. 6 points
The grade is determined by adding two points to the total number of points and dividing by two.

