UNIVERSITEIT TWENTE

Faculteit Elektrotechniek, Wiskunde en Informatica

Test exam 1, Random Signals and Filtering (201200135)

The solutions of the exercises need to be clearly formulated and written in a well-structured manner. Moreover, you always need to present a derivation or arguments to support your answer.
You can use one single-sided A4 page of handwritten notes with your exam.

1. Consider $\Omega=\mathbb{R}$ and let \mathcal{P} be such that

$$
\mathcal{P}([a, b])
$$

is a continuous function in a and b. Moreover, \mathcal{P} satisfies all axioms of a probability measure. Prove that $\mathcal{P}(\{3\})=0$.
2. Consider the following linear system:

$$
\begin{aligned}
X_{k+1} & =X_{k}+W_{k} \\
Y_{k} & =X_{k}+V_{k}
\end{aligned}
$$

where X_{0}, V_{k} and W_{k} are mutually independent and all have a uniform distribution on the interval $[0,1]$. Moreover, the noise sequences $\left\{W_{k}\right\}$ and $\left\{V_{k}\right\}$ are assumed to be white.
a) Determine the density function associated to the stochastic variable X_{1}
b) Determine $E\left[X_{0} \mid Y_{0}\right]$
c) Determine $E\left[X_{1} \mid Y_{0}\right]$.
3. Consider the following linear system:

$$
\begin{aligned}
X_{k+1} & =\frac{1}{2} X_{k}+W_{k} \\
Y_{k} & =X_{k}+V_{k}
\end{aligned}
$$

where X_{0}, V_{k} and W_{k} are mutually independent and all have a uniform distribution on the interval $[0,1]$. Moreover, the noise sequences $\left\{W_{k}\right\}$ and $\left\{V_{k}\right\}$ are assumed to be white.
a) Determine $Z=E_{\operatorname{lin}}\left[X_{3} \mid Y_{0}, Y_{1}, Y_{2}\right]$
b) Determine the expectation of Z
c) Determine the variance of Z.
4. Consider a stochastic vector X taking values in \mathbb{R}^{5} with

$$
E X^{\prime} X \leq 10
$$

Argue how you would approach the question how many independent samples $\left\{x_{1}, \ldots x_{N}\right\}$ you would need to ensure that

$$
\mathcal{P}\left(\left|E[C X]-\frac{1}{N} \sum_{i=1}^{N} C x_{i}\right|>0.1\right)<0.05
$$

where

$$
C=\left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

