Random Signals and Filtering (201200135)

Final Exam (with 4 questions) Thursday 14/04/2016, 13:45 - 16:45

Full Marks: 30 Instructor: P. K. Mandal

Formulate your answers clearly and present them in a well-structured manner.

- 1. Prove that the intersection of two σ -fields is again a σ -field.
- 2. Recall the (semi-)measure theoretic definition of conditional expectation:

For an integrable r.v. X, i.e., $E(|X|) < \infty$, E(X|Y) is defined to be the function h(Y) where $h : \mathbb{R} \to \mathbb{R}$ is (Borel) measurable and satisfies

E[h(Y)g(Y)] = E[Xg(Y)] for all bounded mesurable function $g: \mathbb{R} \to \mathbb{R}$.

To determine the function $h(\cdot)$ in the definition above one often resorts to the non-measure theoretic definition of conditional probability distribution.

- (a). Consider square integrable r.v.s U, V and W, where U is independent of V and W. Show from the (measure theoretic) definition that E(UV|W) = E(U)E(V|W). [3]
- (b.) Consider the following nonlinear system: for $k \ge 0$,

$$X_{k+1} = X_k \sqrt{W_k}$$
$$Y_k = \sqrt{X_k} V_k,$$

where the initial state X_0 , and for $k \ge 0$, the noises W_k , V_k are all Uniform(0, 1). Furthermore, X_0 , $\{W_k\}$, and $\{V_k\}$ are mutually independent and the noise sequences $\{W_k\}$ and $\{V_k\}$ are white.

- (i) Determine $E(X_0 | Y_0)$. [3]
- (ii) Determine $E(X_1 | Y_0)$.
- 3(a.) What is meant by linear innovations corresponding to a sequence of measurements Y_0, Y_1, \ldots, Y_n ? Show that linear innovations are uncorrelated. [3]
- (b.) Obtain the first two innovations for the following nonlinear system: for $k \ge 0$, [3]

$$X_{k+1} = X_k^2 + W_k$$
$$Y_k = X_k + V_k,$$

where the initial state X_0 , and for $k \ge 0$, the noises W_k , V_k are all N(0, 1). Furthermore, X_0 , $\{W_k\}$, and $\{V_k\}$ are mutually independent and the noise sequences $\{W_k\}$ and $\{V_k\}$ are white.

[4]

[2]

4. Recall that in a particle filter algorithm at time k, x_k^i is drawn from a proposal/importance density $\pi(x_k; x_{k-1}^i, y_k)$ and subsequently the weights are updated. The weight update step involves the calculation of the unnormalized weights:

$$\tilde{w}_{k}^{i} = w_{k-1}^{i} \frac{p(y_{k}|x_{k}^{i}) p(x_{k}^{i}|x_{k-1}^{i})}{\pi(x_{k}^{i}; x_{k-1}^{i}, y_{k})}$$

(a.) Show that this equation becomes $\tilde{w}_k^i = w_{k-1}^i p(y_k | x_{k-1}^i)$ when one uses the "optimal importance density", i.e., $\pi(x_k; x_{k-1}, y_k) = p(x_k | x_{k-1}, y_k)$. [2]

In general, it is not easy to determine the optimal importance density $p(x_k|x_{k-1}, y_k)$. Neither is it easy to draw samples from it. However, it is possible to do so when the measurement equation is linear-Gaussian.

Consider again the (real-valued) nonlinear system in question 3(b).

- (b.) Argue that given $X_{k-1} = x_{k-1}$, the (conditional) joint distribution of X_k and Y_k is Gaussian and determine it completely. [3]
- (c.) Determine $p(x_k|y_k, x_{k-1})$ using the following fact.

If X and Y are random vectors distributed jointly as Gaussian, then the conditional distribution of X given Y = y is Gaussian with mean and covariance (matrix), given respectively by

[2]

$$\mu(y) = E(X) + \operatorname{Cov}(X, Y) \operatorname{Cov}(Y)^{-1} (y - E(Y))$$

$$\Sigma(y) = \operatorname{Cov}(X) - \operatorname{Cov}(X, Y) \operatorname{Cov}(Y)^{-1} \operatorname{Cov}(Y, X).$$

(d.) Give the pseudo code for a generic iteration step of the particle filter, i.e., how to obtain $(x_k^i, w_k^i)_{i=1}^N$ from $(x_{k-1}^i, w_{k-1}^i)_{i=1}^N$ and the measurement y_k . [5]

Assume that you have access to a command normpdf (x,m,s) allowing you to evaluate the normal pdf (with mean m and variance s^2) at point x and the command randn(m,s) to generate a sample from it.