Random Signals and Filtering (201200135)

Final Exam (with 4 questions) Thursday 27/07/2017, 13:45 – 16:45

Full Marks: 35 Instructor: Dr. P. K. Mandal

[4]

[3]

 $\left[4\right]$

Formulate your answers clearly and present them in a well-structured manner.

1. Let \mathcal{F} be a σ -field on Ω , X be a random variable defined on (Ω, \mathcal{F}) , and $\mathfrak{B}(\mathbb{R})$ be the Borel σ -field on \mathbb{R} . Consider the following collection of inverse images under X:

$$\mathbb{A} = \{ X^{-1}(B) : B \in \mathfrak{B}(\mathbb{R}) \}.$$

Show that A is a σ -field.

Hint: Recall that
$$f^{-1}(A^c) = (f^{-1}(A))^c$$
 and $f^{-1}(\bigcup_{n=1}^{\infty} A_n) = \bigcup_{n=1}^{\infty} f^{-1}(A_n).$

- 2. Let X and Y be two random variables defined on the probability space (Ω, \mathcal{F}, P) . Recall that $E_{\text{aff}}(X | Y)$ can be thought of as the (orthogonal) projection of X onto the space of linear functions of Y, of the form a+bY. You will now derive the formula for $E_{\text{aff}}(X | Y)$.
 - (a) Use the Projection Theorem to show that $E_{aff}(X | Y) = a^* Y + b^*$, where a^* and b^* satisfy the normal equations: [3]

$$E[X] = a^* E[Y] + b^*$$

$$E[XY] = a^* E[Y^2] + b^* E[Y].$$

(b) Show that $E_{\text{aff}}(X | Y) = E(X) + \text{Cov}(X, Y) \text{Var}(Y)^{-1} (Y - E(Y)).$ [1]

3. Consider the following nonlinear system: for $k \ge 0$,

$$X_{k+1} = \sqrt{X_k} W_k$$
 and $Y_k = X_k \sqrt{V_k}$,

where the initial state X_0 and the noises W_k , V_k $(k \ge 0)$ are all Uniform(0, 1). Furthermore, X_0 and the sequences $\{W_k\}$ and $\{V_k\}$ are mutually independent.

- (a) Suppose 0 < x < 1. Show that, for any $k \ge 0$, the conditional probability density function (pdf) of Y_k given $\{X_k = x\}$ is $f_{Y_k|X_k=x}(y) = \frac{2y}{x^2}, \quad 0 < y < x.$ [2]
- (b) Show that the joint pdf of (X_0, Y_0) and the pdf of Y_0 are given by, respectively, [3]

$$f_{X_0,Y_0}(x_0,y_0) = \frac{2y_0}{x_0^2}, \ 0 < y_0 < x_0 < 1, \text{ and } f_{Y_0}(y_0) = 2(1-y_0), \ 0 < y_0 < 1.$$

(c) Determine $E(X_0 | Y_0)$.

(d) Calculate $E_{\text{aff}}(X_0 | Y_0)$ and relate it to the answer in part (c).

4. Consider, again, the nonlinear system as described in question 3. In other words,

$$X_{k+1} = \sqrt{X_k} W_k$$
$$Y_k = X_k \sqrt{V_k},$$

where the initial state X_0 and the noises W_k , V_k $(k \ge 0)$ are all Uniform(0, 1). Furthermore, X_0 and the sequences $\{W_k\}$ and $\{V_k\}$ are mutually independent.

(a) Suppose we want to implement a particle filter (PF) to this system with the importance density $\pi(x_k; x_{k-1}, y_k) = p(x_k | x_{k-1})$. Describe, given the weighted particle representation $\{(x_{k-1}^i, w_{k-1}^i), i = 1, 2, ..., N\}$ of the posterior distribution at time (k-1), and the new measurement y_k at time k, how you can obtain the particle representation, $\{(x_k^i, w_k^i), i = 1, 2, ..., N\}$, of the posterior at time k. Do this in the form of an algorithm/pseudo-code. [5]

Assume that you have access to a command rand(a,b) to generate a sample from Unif(a, b) distribution. Everything else in your code should be self explanatory, i.e., in terms of standard arithmetic operations and known structures like if and for loop.

- (b) How can you extract the posterior mean $E(X_k | Y_{0:k})$ and the variance $Var(X_k | Y_{0:k})$ from the particle representation? [2]
- (c) Often a resampling step is performed in a PF algorithm. Discuss briefly the problem that the resampling step tries to solve. [2]
- (d) Often one talks about the *optimal* importance/proposal density in a PF. What is it? In what sense is it optimal? [2]
- (e) Could we have used (extended) Kalman filter (EKF) for this system to extract the posterior information about x_k ? If yes, how would you proceed? If not, what would you have needed to be able to apply EKF? [4]