Random Signals and Filtering (201200135)

Faculty of EEMCS, University of Twente

Final Exam (with 4 questions) Thursday, 18/04/2019, 13:45-16:45

Full Marks: 30 Instructor: P. K. Mandal

This is a closed book exam. Formulate your answers clearly, with proper motivation.

Present your answers in a well-structured manner.

1. Suppose $\Omega = [0, \infty)$. Consider a function \mathcal{P} , defined on (Borel) subsets of Ω , satisfying:

$$\mathcal{P}([n, n+1)) = \frac{1}{2^{n+1}}$$
 and $\mathcal{P}([n, n+1]) = \frac{3}{2^{n+2}}$, for $n = 0, 1, 2, ...$

- a) Analyze if \mathcal{P} can satisfy all the axioms of a probability measure. [3]
- b) Suppose \mathcal{P} does satisfy all the axioms, and let $\mathbb{N} = \{1, 2, 3, \ldots\}$ be the set of natural numbers. Calculate $\mathcal{P}(\Omega \setminus \mathbb{N})$.
- 2. a) Suppose X is a square integrable r.v., i.e., $E(X^2) < \infty$. Recall that $E(X \mid Y)$ can be thought of as the projection of X onto \mathcal{V} , the space of square integrable (Borel) functions of Y.

Consider square integrable r.v.s U, V and W, where U is independent of V and W. Use the *Projection Theorem* to show that E(U V | W) = E(U) E(V | W). [3]

 $\sqrt{}$ b) Consider the following nonlinear system: for $k \geq 0$,

$$X_{k+1} = X_k \sqrt{W_k}$$
 and $Y_k = \sqrt{X_k} V_k$,

where the initial state X_0 , and the noises W_k , V_k , for $k \geq 0$, are all Uniform (0, 1). Furthermore, X_0 , $\{W_k\}$, and $\{V_k\}$ are mutually independent and the noise sequences $\{W_k\}$ and $\{V_k\}$ are white.

Note that there is an observation Y_0 at t=0! In the following, you will obtain the first "filtered" estimate \hat{X}_0 and the next "predicted" estimate $\hat{X}_{1|0}$.

(i.) Show that the pdf of Y_0 and the posterior pdf of X_0 (conditional on $Y_0 = y_0$) are given by

$$p_{Y_0}(y_0) = 2(1 - y_0), \text{ for } y_0 \in (0, 1) \quad \text{(and 0, otherwise.)}$$

$$p(x_0|y_0) = \begin{cases} \text{undefined,} & \text{if } y_0 \notin (0, 1) \\ \frac{1}{2\sqrt{x_0}(1 - y_0)}, & \text{for } y_0^2 \le x_0 \le 1, \text{ provided } y_0 \in (0, 1), \\ 0 & \text{otherwise.} \end{cases}$$

Determine, also, $\hat{X}_0 := E(X_0 | Y_0)$. [2+2+2]

(ii.) Use part (a), to determine $\hat{X}_{1|0} := E(X_1 | Y_0)$. [2]

- $\sqrt{3}$. a) What is meant by linear innovations corresponding to a sequence of measurements Y_0, Y_1, \ldots, Y_n ? Show that any two linear innovations are uncorrelated. [3]
 - b) Consider the real-valued nonlinear system in Question 4, with $\sigma_0 = \sigma_s = \sigma_m = 1$. Obtain the first two linear innovations for the sequence of measurements generated by the system.

Hint: Use different properties of covariance and the following facts. For $Z \sim \mathcal{N}(0,1), \ E(Z^4) = 3$ and $E(Z^6) = 15.$ Also, $E_{\text{aff}}(X \mid Y) = E(X) + \text{Cov}(X,Y) \text{Cov}(Y)^{-1} (Y - E(Y)).$

4. Consider the following (real-valued) nonlinear system: for $k \geq 0$,

$$X_{k+1} = X_k^2 + \xi_k$$
$$Y_k = X_k^2 + V_k,$$

where the initial state $X_0 \sim \mathcal{N}(0, \sigma_0^2)$, and for $k \geq 0$, the state noises $\xi_k \sim \mathcal{N}(0, \sigma_s^2)$ and the measurement noises $V_k \sim \mathcal{N}(0, \sigma_m^2)$. Furthermore, X_0 , $\{\xi_k\}$, and $\{V_k\}$ are mutually independent and the noise sequences $\{\xi_k\}$ and $\{V_k\}$ are white.

Note that there is an observation Y_0 at t = 0!

a) Suppose we would like to implement a particle filter (PF) to the system with the importance density $\pi(x_k; x_{k-1}, y_k) = p(x_k|x_{k-1})$. Give the pseudo code for a generic iteration step of the particle filter. [4]

More precisely, describe how you will use $\{(x_{k-1}^i, w_{k-1}^i), i = 1, 2, ..., N\}$, the weighted particle representation of the posterior at time (k-1), and the measurement y_k at current time k, to obtain the particle representation of the current posterior: $\{(x_k^i, w_k^i), i = 1, 2, ..., N\}$.

The code should be self explanatory, i.e., in terms of known/standard functions or known structures like if and for loop. You may assume that you have access to the following commands.

NormPDF(x,m,s) that evaluates the $\mathcal{N}(m,s^2)$ -density at the point x

RandNorm(m,s) that generates a sample from a $\mathcal{N}(m, s^2)$ -r.v.

RandPMF(x_vec , p_vec , n) that produces a random sample of size "n" from the discrete distribution with values " x_vec " and corresponding probabilities " p_vec ".

- b) How will you extract the posterior mean $E(X_k | Y_{0:k} = y_{0:k})$ and the posterior variance $Var(X_k | Y_{0:k} = y_{0:k})$ from the particle representation? [2]
- c) Often, one considers other importance/proposal densities than the standard one used in above, i.e., the state-transition density $p(x_k|x_{k-1})$. What are the advantages and disadvantages of the standard proposal? [2]