Exam "Discrete Optimization"

Monday, January 12, 2015, 13:30-16:30

- Use of calculators, mobile phones, and other electronic devices is not allowed!
- The exam consists of six problems. Please start a new page for every problem.
- The total number of points of the regular assignments is 45 . You get 5 bonus points, and you can get 5 bonus points from Exercise 1b.

1. Independent Set

We consider the problem IndependentSet:
Instance: undirected graph $G=(V, E)$;
Solution: subset $U \subseteq V$ such that, for all $u, v \in U$, we have $\{u, v\} \notin E$ (the set U is called an independent set);

Goal: maximize $|U|$.

Let $d_{v}=|\{u \in V \mid\{u, v\} \in E\}|$ be the degree of a vertex $v \in V$ in G, and let $\Delta=\max \left\{d_{v} \mid v \in V\right\}$ be the maximum degree of G.

In order to approximate the problem, we consider the greedy method: we start with $U=\emptyset$. Then we consider the nodes of V one by one. If we consider $v \in V$ and $\{v\} \cup U$ is an independent set, then we add it to U. Otherwise, we skip v.
(a) (6 points) Prove that the greedy method achieves an approximation ratio of $\Delta+$ 1 for IndependentSet. This means that greedy outputs an independent set U such that $|U| \geq \frac{1}{\Delta+1} \cdot\left|U^{\star}\right|$, where U^{\star} denotes an independent set of maximum cardinality.
(b) (5 bonus points) Prove that greedy achieves an approximation ratio of Δ for IndependentSet.

If you solve this part correctly, you also get the points of Part (a).

2. Shortest Paths

(6 points) Devise an algorithm with a running-time of $O(n+m)$ for the following optimization problem:

Instance: directed graph $G=(V, E)$ with $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and $|E|=m$ and edge costs $c: E \rightarrow \mathbb{R}$ (negative edge costs are allowed). The graph satisfies the following property: if $\left(v_{i}, v_{j}\right) \in E$, then $i<j$.

Goal: Compute shortest path distances from v_{1} to all other nodes in G.
A proof of correctness and of the running-time is not required.

3. Spanning Trees

We consider the problem SecondMST of computing the second-lightest spanning tree in a graph:

Instance: undirected graph $G=(V, E)$, edge weights $w: E \rightarrow \mathbb{N}$;
Solution: a spanning tree S (called the second-lightest tree) of G with the following properties:

- There exists a tree $T^{\star} \neq S$ with $w\left(T^{\star}\right) \leq w(S)$.
- We have $w(T) \geq w(S)$ for all spanning trees $T \neq T^{\star}$ of G.

Remark: In the following, the observation that $\left|T \triangle T^{\prime}\right|$ is even for all spanning trees T and T^{\prime} is useful. The observation holds since $|T|=\left|T^{\prime}\right|=n-1$.
(a) (5 points) Let T^{\star} be a minimum-weight spanning tree, and let Y be an arbitrary spanning tree with $\left|Y \triangle T^{\star}\right| \geq 4$. Then there exists a spanning tree Z with the following two properties:
(i) $\left|Z \triangle T^{\star}\right|=\left|Y \triangle T^{\star}\right|-2$.
(ii) $w\left(T^{\star}\right) \leq w(Z) \leq w(Y)$.
(b) (3 points) Let T^{\star} be a minimum-weight spanning tree. Prove the following: There exists a second-lightest tree S with $\left|S \triangle T^{\star}\right|=2$.
Remark: You can of course use Part (a) even if you did not prove it.
(c) (4 points) Devise a polynomial-time algorithm for SecondMST. Justify the correctness of your algorithm and estimate its running-time.
Remark: You can of course use Part (b) even if you did not prove it.

4. NP-Completeness

The bounded-degree spanning tree problem, denoted by BoundedMST, is the following decision problem:

Instance: undirected graph $G=(V, E)$;
Question: is there a spanning tree T of G such that every node $u \in V$ is incident to at most three edges in T ?
(7 points) Prove that BoundedMST is NP-complete.
Hint: You can reduce from HamiltonPath, which is the following problem and known to be NP-complete:

Instance: undirected graph $G=(V, E)$;
Question: is there a simple path P in G that visits all vertices of G (called a Hamilton path)?

Note that a Hamilton path is a spanning tree of maximum degree two.

5. Minimum Cost Flows

(6 points) Let $G=(V, E)$ be a directed graph with edge capacities $w: E \rightarrow \mathbb{N}$ and edge costs $c: E \rightarrow \mathbb{N}$ and balances $b: V \rightarrow \mathbb{Z}$.

Prove that the following statements are equivalent for all feasible flows f :
(I) The flow f is the unique minimum cost flow.
(II) For every directed cycle C in G_{f}, we have $c(C)>0$.

6. Questions

Are the following statements true or false? Give a short justification of your answer.
(a) (2 points) Consider the minimum cost flow problem. If all balances, capacities, and costs are integral, then all optimal flows have integral costs.
(b) (2 points) Since Knapsack can be solved in pseudo-polynomial time, there is no polynomial-time many-one reduction from 3SAT to Knapsack.
(c) (2 points) PerfectMatch $=\{G \mid G$ contains a perfect matching $\} \in$ NP.
(d) (2 points) Let $G=(V, E)$ be a directed graph and let $s \in V$ be arbitrary. Let $c: E \rightarrow \mathbb{R}$ be edge costs such that G does not contain any negative cycle. Then there exists a node $v \in V$ such that the shortest path from s to v consists of a single edge.

