Re-Exam "Discrete Optimization"

Friday, February 20, 2015, 13:15-16:15

- Use of calculators, mobile phones, and other electronic devices is not allowed!
- The exam consists of six problems. Please start a new page for every problem.
- The total number of points of the regular assignments is 45 . You get 5 bonus points, and you can get 5 bonus points from Exercise 1b.

1. Spanning Trees

We consider the problem ExactST01:
Instance: undirected, connected graph $G=(V, E)$; edge costs $c: E \rightarrow\{0,1\}$, i.e., each edge has costs of either 0 or 1 ; a number $k \in \mathbb{N}$.
Goal: find a spanning tree T of G such that $c(T)=\sum_{e \in T} c(e)=k$ (this means that T contains k edges of cost 1 and $n-k-1$ edges of cost 0), or conclude that no such tree exists.

As usual, we have $n=|V|$ and $m=|E|$.
(a) (6 points) Prove the following statement: For every undirected, connected graph $G=(V, E)$ with edge costs $c: E \rightarrow\{0,1\}$, there exist two numbers $a, b \in \mathbb{N}$ with $a \leq b$ and the following property:

- For every $k \in\{a, a+1, \ldots, b-1, b\}$, the graph G contains a spanning tree T with $c(T)=k$.
- The graph G does not contain a spanning tree of weight k for $k<a$ or $k>b$.
(b) (5 points) Devise a polynomial-time algorithm for ExactST01. Prove that your algorithm is correct and analyze its running-time.
(c) (5 bonus points) Devise an algorithm for ExactST01 that has a running-time of $O(m \log m)$. Prove that your algorithm is correct and satisfies the running-time bound.
If you solve this part correctly, you also get the points of Part (b).

2. Traveling Salesman Problem

Our goal is to find an approximation algorithm for MaxTSP:
Instance: undirected, complete graph $G=(V, E)$ with edge weights $w: E \rightarrow \mathbb{R}^{+}$.
Solution: a Hamiltonian cycle $H \subseteq E$ of G.
Goal: maximize $w(H)=\sum_{e \in H} w(e)$.
For an instance $G=(V, E)$ and w for MaxTSP, let H^{\star} be a Hamiltonian cycle of G of maximum weight.

In the following, we assume that the number n of nodes is even.
(a) (3 points) Let M^{\star} be a maximum-weight perfect matching of the graph G with edge weights w.
Prove that $w\left(M^{\star}\right) \geq \frac{1}{2} \cdot w\left(H^{\star}\right)$.
(b) (4 points) Devise a polynomial-time approximation algorithm for MaxTSP. Your algorithm should output a Hamiltonian cycle H with $w(H) \geq \frac{1}{2} \cdot w\left(H^{\star}\right)$.

3. NP-Completeness

The exact-costs spanning tree problem, denoted by ExactST, is the following decision problem:

Instance: undirected graph $G=(V, E)$, edge costs $c: E \rightarrow \mathbb{N}$, number $k \in \mathbb{N}$.
Question: is there a spanning tree T of G such that $c(T)=\sum_{e \in T} c(e)=k$?
(7 points) Prove that ExactST is NP-complete.
Hint: You can reduce from SubsetSum, which is the following problem and known to be NP-complete:

Instance: n items with weights $w_{i}, \ldots, w_{n} \in \mathbb{N}$, number $k \in \mathbb{N}$.
Question: is there a subset $I \subseteq\{1, \ldots, n\}$ of the items such that $w(I)=\sum_{i \in I} w_{i}=k$?
Remark: Note the difference to Exercise 1 - in Exercise 1, only costs 0 and 1 are allowed; here, arbitrary natural numbers are allowed as costs.

4. Minimum-Cost Flows

Let $G=(V, E)$ be a flow network with budgets $b: V \rightarrow \mathbb{Z}$, capacities $w: E \rightarrow \mathbb{N}$, and $\operatorname{costs} c: E \rightarrow \mathbb{N}$. For a feasible flow $f: E \rightarrow \mathbb{R}^{+}$on this network, let $H_{f}=\left(V, D_{f}\right)$ be an undirected graph with the same set V of nodes as G and with the following set D_{f} of edges:

$$
D_{f}=\{\{u, v\} \mid f(u, v)>0 \text { and } f(u, v)<w(u, v)\} .
$$

This means that the edge set D_{f} contains an undirected edge $\{u, v\}$ if the edge $(u, v) \in E$ is neither saturated nor empty under the flow f.

For simplicity, you can assume that G does not contain pairs of reversed edges, i.e., if $(u, v) \in E$, then $(v, u) \notin E$.

Example: The left-hand side shows a flow network including a flow f, the right-hand side shows the corresponding graph D_{f}. Budgets are written inside the nodes. The edge labels are "flow/capacity". Costs are omitted as they do not play a role in this example.

(a) (3 points) Prove the following: Let f be a feasible flow. If the graph H_{f} contains a cycle, then f can be written as the convex combination of at least two other feasible flows g_{1} and g_{2} such that $\left|D_{g_{1}}\right|,\left|D_{g_{2}}\right|<\left|D_{f}\right|$. This means that the graphs $H_{g_{1}}$ and $H_{g_{2}}$ contain fewer edges than H_{f}.
(b) (3 points) Prove the following: There exists a feasible flow f^{\star} of minimum cost such that $D_{f^{\star}}$ is a forest.

5. Matchings

The node surveillant problem (denoted by NodeSurv) is the following decision problem: An instance of NodeSurv is an undirected graph $G=(V, E)$ with budgets $b_{v} \in \mathbb{N}$ for all nodes $v \in V$. A node $v \in \mathbb{N}$ can surveil at most b_{v} of the edges adjacent to it.

Our goal is to assign the edges to the nodes such that as many edges as possible are surveilled.
(6 points) Devise a polynomial-time algorithm for determining the maximum number of edges that can be surveilled.

Remark: You can use a (polynomial-time) subroutine for computing bipartite matchings of maximum cardinality as a black box. A proof of correctness of your algorithm is not needed, but you should give a brief explanation why it works. A formal analysis of the running-time is also not needed, if it is clear that it is polynomial.

Example: In the four examples below, the budgets are written inside the nodes. In the two graphs on the left-hand side, all edges can be surveilled. This means that the answers are " 5 " and " 8 ". In the third graph, the answer is " 4 ". In the fourth graph, the answer is " 7 ".

6. True or False

Are the following statements true or false? Justify your answer.
(a) (2 points) Assume that you have a flow network with source s and $\operatorname{sink} t$, an s - t cut (X, \bar{X}), and a flow f. Then the capacity of the cut (X, \bar{X}) is at least the flow value of f, i.e., $c(X, \bar{X}) \geq|f|$.
(b) (2 points) If Knapsack can be solved in polynomial time, then 3SAT can be solved in polynomial time.
(c) (2 points) Let $G=(V, E)$ be a connected graph consisting of at least three vertices, and let T be a spanning tree of G. Then, for all $X \subseteq V$ with $\emptyset \neq X \neq V$, there is exactly one edge in T crossing the cut (X, \bar{X}).
(d) (2 points) There is a polynomial-time many-one reduction from PerfectMatch $=$ $\{G \mid$ undirected graph G contains a perfect matching $\}$ to 3SAT.

