Re-Exam "Discrete Optimization"

Wednesday, January 18, 2017, 13:00 - 16:00

- Answers have to be in English.
- Use of calculators, mobile phones, and other electronic devices is not allowed.
- The exam consists of six problems. Please start a new page for every problem.
- The total number of points is 50.

1. Matroids

Let G = (V, E) be an undirected, connected graph. Let n = |V| be the number of vertices of G. We assume that $|E| \ge n$. A 1-tree of G is a connected spanning subgraph L that has exactly n edges. (The name 1-tree comes from the fact that Lconsists of a spanning tree plus one additional edge.)

Let (E, \mathcal{M}) be the following independent set system:

- If $F \subseteq E$ forms a 1-tree, then $F \in \mathcal{M}$.
- If $F' \subseteq F$ and F is a 1-tree, then $F' \in \mathcal{M}$.

(8 points) Prove that (E, \mathcal{M}) is a matroid. To do this, you only have to prove that (M3) holds: If $A, B \in \mathcal{M}$ and |A| < |B|, then there exists some edge $e \in B \setminus A$ with $A \cup \{e\} \in \mathcal{M}$.

2. NP-Completeness

The hitting set problem HittingSet is the following optimization problem:

Instance: a finite set X (called the "universe"); subsets $S_1, \ldots, S_n \subseteq X$.

Solution: a subset $H \subseteq X$ that satisfies $H \cap S_i \neq \emptyset$ (this means that H "hits" all the subsets S_1, \ldots, S_n – hence H is called a "hitting set").

Goal: minimize |H|.

The decision version of HittingSet is the following problem: Given an instance of HittingSet and a number $k \in \mathbb{N}$, does there exist a hitting set H with $|H| \leq k$?

(a) (7 points) Prove that HittingSet is NP-hard. You do not have to prove that the decision version of HittingSet is in NP.

Hint: VertexCover is the following NP-hard problem:

Instance: undirected graph G = (V, E).

Solution: $U \subseteq V$ such that each edge in E has at least on endpoint in U. (Then U is called a "vertex cover" of G.)

Goal: minimize |U|.

The decision version of VertexCover is the following problem: Given an instance of VertexCover and an $\ell \in \mathbb{N}$, does there exist a vertex cover U of G with $|U| \leq \ell$?

- (b) (7 points) Consider the following algorithm for HittingSet, which we call NAIVE: 1: $H = \emptyset$
 - 2: while there is some *i* with $S_i \cap H = \emptyset$ do
 - 3: $H = H \cup S_i$
 - 4: end while

Let $c_{\max} = \max\{|S_i| \mid 1 \le i \le n\}$ be the cardinality of the largest set in the given instance.

Prove that NAIVE yields a c_{\max} -approximation for HittingSet. This means that NAIVE computes a hitting set U such $|U| \leq c_{\max} \cdot |U^*|$, where $|U^*|$ is a hitting set of minimum cardinality.

3. Pseudo-Polynomial and Approximation Algorithms

Pack is the following optimization problem:

Instance: numbers $a_1, \ldots, a_n \in \mathbb{N}$, a number $b \in \mathbb{N}$

Solution: a subset $I \subseteq \{1, \ldots, n\}$ with $\sigma(I) = \sum_{i \in I} a_i \leq b$

Goal: maximize $\sigma(I)$.

(a) (5 points) Devise an algorithm that solves Pack in time polynomial in b and n. It suffices if your algorithm outputs $\sigma(I^*)$, where I^* denotes an optimal solution. Your algorithm does not need to output the set I^* .

You do not have to prove the correctness of your algorithm.

(b) (5 points) Devise a polynomial-time algorithm that computes a set I such that $\sigma(I) \geq \frac{1}{2} \cdot \sigma(I^*)$, where I^* denotes an optimal solution.

This means that your algorithm should be a 2-approximation for Pack.

4. Min-Cost Flows

We consider flow networks G = (V, E) with balances $b = (b_v)_{v \in V}$ and edge costs $c = (c_e)_{e \in E}$, but without edge capacities. This means that f is a flow if f assigns a non-negative flow value to each directed edge and satisfies the balance constraints. We assume that there exists a feasible flow f.

(6 points) Prove that the following two statements are equivalent for all such flow networks:

- (I) There exists a minimum-cost flow in G.
- (II) The flow network G does not contain a directed cycle of negative costs.

5. Minimum Spanning Trees

(4 points) Prove the following statement.

For all undirected, connected graphs G = (V, E) with edge weights w, the following holds: Let t be the smallest number such that $G_t = (V, E_t)$ is connected, where

$$E_t = \{ e \in E \mid w_e \le t \}.$$

Then G_t contains a minimum spanning tree of G.

6. Miscellaneous Questions

Are the following statements true or false? Justify your answer. This justification can be a short proof, a reference to a theorem of the lecture, a counterexample, ...

(a) (2 points) For all directed graphs G = (V, E) with edge lengths d and $s, t \in V$, the following holds:

There exists a shortest s-t path in G if and only if

- there exists an s-t path in G and
- G does not contain a cycle of negative length.
- (b) (2 points) Let $PerfectMatch = \{G \mid G \text{ contains a perfect matching}\}$. If there is a polynomial-time many-one reduction from 3SAT to PerfectMatch, then NP = P.
- (c) (2 points) For all decision problems A and B with $B \subseteq A$, the following holds: If $A \in \mathsf{P}$, then $B \in \mathsf{P}$.

(Here, $B \subseteq A$ means that the set of "yes" instances of B is a subset of the "yes" instances of A.)

(d) (2 points) Let G = (V, E) be a connected graph consisting of at least three vertices, and let T be a spanning tree of G. Then, for all $X \subseteq V$ with $\emptyset \neq X \neq V$, there is exactly one edge in T crossing the cut (X, \overline{X}) .