Re-Exam "Discrete Optimization"

Wednesday, January 18, 2017, 13:00-16:00

- Answers have to be in English.
- Use of calculators, mobile phones, and other electronic devices is not allowed.
- The exam consists of six problems. Please start a new page for every problem.
- The total number of points is 50 .

1. Matroids

Let $G=(V, E)$ be an undirected, connected graph. Let $n=|V|$ be the number of vertices of G. We assume that $|E| \geq n$. A 1-tree of G is a connected spanning subgraph L that has exactly n edges. (The name 1 -tree comes from the fact that L consists of a spanning tree plus one additional edge.)

Let (E, \mathcal{M}) be the following independent set system:

- If $F \subseteq E$ forms a 1-tree, then $F \in \mathcal{M}$.
- If $F^{\prime} \subseteq F$ and F is a 1-tree, then $F^{\prime} \in \mathcal{M}$.
(8 points) Prove that (E, \mathcal{M}) is a matroid. To do this, you only have to prove that (M3) holds: If $A, B \in \mathcal{M}$ and $|A|<|B|$, then there exists some edge $e \in B \backslash A$ with $A \cup\{e\} \in \mathcal{M}$.

2. NP-Completeness

The hitting set problem HittingSet is the following optimization problem:
Instance: a finite set X (called the "universe"); subsets $S_{1}, \ldots, S_{n} \subseteq X$.
Solution: a subset $H \subseteq X$ that satisfies $H \cap S_{i} \neq \emptyset$ (this means that H "hits" all the subsets S_{1}, \ldots, S_{n} - hence H is called a "hitting set").

Goal: minimize $|H|$.
The decision version of HittingSet is the following problem: Given an instance of HittingSet and a number $k \in \mathbb{N}$, does there exist a hitting set H with $|H| \leq k$?
(a) (7 points) Prove that HittingSet is NP-hard. You do ñot have to prove that the decision version of HittingSet is in NP.
Hint: VertexCover is the following NP-hard problem:
Instance: undirected graph $G=(V, E)$.
Solution: $U \subseteq V$ such that each edge in E has at least on endpoint in U. (Then U is called a "vertex cover" of G.)
Goal: minimize $|U|$.
The decision version of VertexCover is the following problem: Given an instance of VertexCover and an $\ell \in \mathbb{N}$, does there exist a vertex cover U of G with $|U| \leq \ell$?
(b) (7 points) Consider the following algorithm for HittingSet, which we call NaIVE:

1: $H=\emptyset$
2: while there is some i with $S_{i} \cap H=\emptyset$ do

$$
H=H \cup S_{i}
$$

end while
Let $c_{\text {max }}=\max \left\{\left|S_{i}\right| \mid 1 \leq i \leq n\right\}$ be the cardinality of the largest set in the given instance.

Prove that Naive yields a $c_{\text {max }}$-approximation for HittingSet. This means that NaIVE computes a hitting set U such $|U| \leq c_{\max } \cdot\left|U^{\star}\right|$, where $\left|U^{\star}\right|$ is a hitting set of minimum cardinality.

3. Pseudo-Polynomial and Approximation Algorithms

Pack is the following optimization problem:
Instance: numbers $a_{1}, \ldots, a_{n} \in \mathbb{N}$, a number $b \in \mathbb{N}$
Solution: a subset $I \subseteq\{1, \ldots, n\}$ with $\sigma(I)=\sum_{i \in I} a_{i} \leq b$
Goal: maximize $\sigma(I)$.
(a) (5 points) Devise an algorithm that solves Pack in time polynomial in b and n. It suffices if your algorithm outputs $\sigma\left(I^{\star}\right)$, where I^{\star} denotes an optimal solution.
Your algorithm does not need to output the set I^{\star}.
You do not have to prove the correctness of your algorithm.
(b) (5 points) Devise a polynomial-time algorithm that computes a set I such that $\sigma(I) \geq \frac{1}{2} \cdot \sigma\left(I^{\star}\right)$, where I^{\star} denotes an optimal solution.
This means that your algorithm should be a 2-approximation for Pack.

4. Min-Cost Flows

We consider flow networks $G=(V, E)$ with balances $b=\left(b_{v}\right)_{v \in V}$ and edge costs $c=\left(c_{e}\right)_{e \in E}$, but without edge capacities. This means that f is a flow if f assigns a non-negative flow value to each directed edge and satisfies the balance constraints. We assume that there exists a feasible flow f.
(6 points) Prove that the following two statements are equivalent for all such flow networks:
(I) There exists a minimum-cost flow in G.
(II) The flow network G does not contain a directed cycle of negative costs.

5. Minimum Spanning Trees

(4 points) Prove the following statement.
For all undirected, connected graphs $G=(V, E)$ with edge weights w, the following holds: Let t be the smallest number such that $G_{t}=\left(V, E_{t}\right)$ is connected, where

$$
E_{t}=\left\{e \in E \mid w_{e} \leq t\right\} .
$$

Then G_{t} contains a minimum spanning tree of G.

6. Miscellaneous Questions

Are the following statements true or false? Justify your answer. This justification can be a short proof, a reference to a theorem of the lecture, a counterexample, ...
(a) (2 points) For all directed graphs $G=(V, E)$ with edge lengths d and $s, t \in V$, the following holds:
There exists a shortest s - t path in G if and only if

- there exists an $s-t$ path in G and
- G does not contain a cycle of negative length.
(b) (2 points) Let PerfectMatch $=\{G \mid G$ contains a perfect matching $\}$. If there is a polynomial-time many-one reduction from 3SAT to PerfectMatch, then $N P=P$.
(c) (2 points) For all decision problems A and B with $B \subseteq A$, the following holds: If $A \in \mathrm{P}$, then $B \in \mathrm{P}$.
(Here, $B \subseteq A$ means that the set of "yes" instances of B is a subset of the "yes" instances of A.)
(d) (2 points) Let $G=(V, E)$ be a connected graph consisting of at least three vertices, and let T be a spanning tree of G. Then, for all $X \subseteq V$ with $\emptyset \neq X \neq V$, there is exactly one edge in T crossing the cut (X, \bar{X}).

