1/22 / A

## Exam Mastermath / LNMB MSc course on Discrete Optimization

January 8, 2018, 10:00 - 13:00

- Use of calculators, mobile phones, and other electronic devices not allowed.
- The exam consists of seven problems. You have approximately 25 minutes per problem.
- Please start a new page for every problem.
- Each question is worth 10 points. The total number of points is 70. 39 Points to pass.
- Relevant problem definitions appear at the end of the exam.

**Problem 1 (Spanning Trees)** Let G=(V,E) be a graph and  $c:E\to\mathbb{Z}_{\geq 0}$  a nonnegative cost function on the edges. Design a polynomial time algorithm that computes a spanning tree T of G that minimizes the maximum weight of any edge in T. Prove the correctness of your algorithm.

**Problem 2** (Matroids) Let  $M=(E,\mathcal{I})$  be an independence system. That is,  $\emptyset \in \mathcal{I}$  and for any  $J \in \mathcal{I}$  and any  $I \subseteq J$ , also  $I \in \mathcal{I}$ . Show that the following two conditions are equivalent:

- 1. For any  $U \subseteq E$ , every basis of U has the same cardinality.
- 2. For every  $I, J \in \mathcal{I}$  with |I| < |J| there exists an element  $x \in J \setminus I$  such that  $I \cup \{x\} \in \mathcal{I}$ .

**Problem 3 (Matchings)** Given an undirected connected graph G = (V, E) with |V| = n nodes and |E| = m edges, an *edge cover* is a subset  $C \subseteq E$  of the edges of the graph such that each node  $v \in V$  is incident with at least one edge  $e \in C$  (i.e., a set of edges that "cover" all the nodes of the graph). Denote by  $\alpha(G)$  the size of a *minimum* cardinality edge cover of G, and by  $\mu(G)$  the size of a *maximum* cardinality matching of G. Show that  $\mu(G) + \alpha(G) = n$ .

(Hint: From any maximum cardinality matching M, construct an edge cover to show  $\mu(G) + \alpha(G) \le n$ . From any minimum cardinality edge cover C, construct a matching to show  $\mu(G) + \alpha(G) \ge n$ .)

**Problem 4 (Minimum Cost Flows)** Let G = (V, E) be a directed graph with edge capacities  $w : E \to \mathbb{Z}_{\geq 0}$  and edge costs  $c : E \to \mathbb{Z}_{\geq 0}$  and balances  $b : V \to \mathbb{Z}$ . Prove that the following statements are equivalent for all feasible flows f:

- 1. The flow f is the unique minimum cost flow.
- 2. For every directed cycle C in the residual graph  $G_f$ , we have c(C) > 0.

of toward row

n=2

 $\alpha CG > \frac{\pi}{2}$ 

m = g + f

06 p101 ( = = = a ( 6) & n

Problem 5 (Hardness of Approximation) Given an undirected, connected graph G = (V, E) with  $|V| \ge 2$ , the min-max degree spanning tree problem is to find a spanning tree T of the graph such that the maximal degree of the nodes in T is minimized. In other words, find a spanning tree  $T = (V, E_T)$ ,  $E_T \subseteq E$ , that minimizes  $\max_{v \in V} d_T(v)$ , where  $d_T(v)$  is the degree of node v in T. For convenience, let us call this optimization problem MDST. Assuming  $P \ne NP$ , show that there cannot be an  $\alpha$ -approximation algorithm for the MDST problem with  $\alpha < \frac{3}{2}$ .

(Hint: Consider the problem to decide if an MDST exists with objective value k=2.)

**Problem 6 (Approximation Algorithms)** Given is a graph G=(V,E) consider the problem to find a subset of nodes  $C\subseteq V$  that maximises the size of the cut induced by C,  $|\delta(C)|$ . This problem is known as the maximum cut problem. Design a 2-approximation algorithm for this problem. That is, your algorithm needs to compute, in polynomial time, a set  $C^*$  with  $|\delta(C^*)| \geq \frac{1}{2} \max_{C\subseteq V} |\delta(C)|$ . Prove that your algorithm is indeed a 2-approximation. (**Hint:** One possibility is to first consider a randomized algorithm.)

**Problem 7** (True / False Questions) Which of the following is true or false, assuming  $P \neq NP$ . Please explain your answer briefly, but precisely. That is, give a short proof, or a counterexample.

- (a) There is a polynomial time reduction from Satisfiability to any problem in NP.
- (b) If there is a strongly polynomial time algorithm to solve the Partition problem, then there is a polynomial time algorithm to solve Satisfiability.
- (c) There is a polynomial time reduction from MATCHING to VERTEX COVER.
- (d) All problems in NP can be reduced to each other.

## Collection of Problems

- MAXIMUM FLOW Given is a directed graph G=(V,E) with edge capacities  $w:E\to\mathbb{Z}_{\geq 0}$ , and two designated nodes  $s,t\in V$ , the source and the target. The problem asks to compute a feasible (s,t)-flow with maximum value. The decision version asks if a flow with value  $\geq k$  exists for given k. There exist polynomial time algorithms for MAXIMUM FLOW.
- MINIMUM COST FLOW Given is a directed graph G=(V,E) with edge capacities  $w:E\to\mathbb{Z}_{\geq 0}$ , edge costs  $c:E\to\mathbb{Z}_{\geq 0}$  and node balances  $b:V\to\mathbb{Z}$ . The problem is to find a feasible flow that minimizes total costs. The decision version asks if a flow with cost  $\leq k$  exists for given k. There exist polynomial time algorithms for MINIMUM COST FLOW.
- HAMILTONIAN PATH (CYCLE) Given an undirected graph G = (V, E), does there exist a simple path (cycle) that visits each of the vertices exactly once? Both problems are strongly NP-complete.
- MATCHING Given an undirected graph G = (V, E), a matching  $M \subseteq E$  is a set of non-incident edges. The maximum matching problem is to find a matching M of G with maximum cardinality |M|. The decision problem asks if, for a given k, a matching

- of size  $\geq k$  exists in G. Edmonds' blossom shrinking algorithm solves the maximum matching problem in polynomial time.
- Partition Given are n integral, non-negative numbers  $a_1,\ldots,a_n$  with  $\sum_{j=1}^n a_j=2B$ . The decision problem is to decide if there is a subset  $W\subseteq\{1,\ldots,n\}$  such that  $\sum_{j\in W}a_j=\sum_{j\not\in W}a_j$ . This decision problem is NP-complete but (as a special case of the Knapsack problem) has a pseudo-polynomial time algorithm.
- SATISFIABILITY Given n Boolean variables  $x_1, \ldots, x_n$ , and a formula F that consists of the conjunction of m clauses  $C_i$ ,  $F = \bigwedge_{i=1}^m C_i$ . Each clause consists of the disjunction of some of the variables  $x_j$  (or their negation  $\bar{x}_j$ ), for example  $C_5 = (x_1 \vee x_4 \vee \bar{x}_7)$ . The decision problem is: Does there exist a truth assignment  $x \in \{\text{false,true}\}^n$  such that F = true? This decision problem is strongly NP-complete.
- VERTEX COVER Given is an undirected graph G=(V,E). A vertex cover is a subset C of the nodes of V such that for any edge  $e=\{u,v\}\in E$ , at least one of the nodes u or v is in C. The decision problem asks if a vertex cover C exists with  $|C|\leq k$ . This decision problem is known to be strongly NP-complete.
- MAXIMUM CUT Given is an undirected graph G = (V, E). The question is to find a subset  $C \subseteq V$  of the nodes of G that maximizes the number of edges in the cut induced by C, that is, a cut that maximizes  $|\delta(C)|$ , where  $\delta(C) := \{\{u, v\} \in E \mid u \in C, v \notin C\}$ . The decision problem is to decide, for given k, if  $C \subseteq V$  exists with  $|\delta(C)| \ge k$ .