Exam Mastermath / LNMB MSc course on Discrete Optimization

January 7, 2019, 09:30 — 13:00

Use of calculators, mobile phones, and other electronic devices not allowed.

The exam consists of seven problems. You have approximately 25 minutes per problem.

Please start a new page for every problem.

Each question is worth 10 points. The total number of points is 70. 39 Points to pass.

Relevant problem definitions appear at the end of the exam.

Problem 1 (Spanning Trees) Let G = (V,E) be a graph and w : E — Z>( a non-
negative weight function on the edges. Design a polynomial time algorithm that computes
a spanning tree T of G that minimizes the maximum weight of any edge in T. Prove the
correctness of your algorithm.

Problem 2 (Matroids) Recall that a matroid is a family Z C 2F of subsets of some
finite set F so that () € Z, subsets of any I € T also belong to Z, and for any two I,J € T
with |I| < |J|, there exists e € J such that I U {e} € I. Prove that the following set system

is a matroid. Given an undirected graph G = (V| E), let

I ={SCV| there exists a matching M of G that covers S}.

Here, matching M C E covers a set of nodes § if for all v € S there exists e € M so that
v € e. (Hint: Consider alternating paths in the symmetric difference of two matchings.)

Problem 3 (Matchings) Given an undirected connected graph G = (V, E) with |V| =n
nodes and |E| = m edges, an edge cover is a subset C' C E of the edges of the graph such
that each node v € V is incident with at least one edge e € C (i.e., a set of edges that
“cover” all the nodes of the graph). Denote by a(G) the size of a minimum cardinality
edge cover of G, and by p(G) the size of a maximum cardinality matching of G. Show that
1(G) + a(G) = n.

(Hint: From maximum cardinality matching M, construct an edge cover to show u(G) + a(G) < n.
From minimum cardinality edge cover C', construct a matching to show u(G) + a(G) > n.)

Problem 4 (Minimum Cost Flows) Let G = (V. E) be a directed graph with edge
capacities w : £ — Z>o and edge costs ¢ : E — Z>¢ and balances b : V' — Z. Prove that
the following statements are equivalent for all feasible flows f:

(a) The flow f is the unique minimum cost flow.
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Problem 4 (NP-hardness) The EXACT SPANNING TREE problem, denoted EST, is the
following decision problem. Given is an undirected graph G = (V, E), edge weights w : E' —
N, and a number k € N. Is there a spanning tree 7" of G such that w(T) := Y .y w(e) = k?
Prove that EST is NP-complete. (Ilint: To show NP-hardness, you can use a reduction from
SUBSET SUM).

Problem 5 (Hardness of Approximation) Consider the BIN PACKING problem as
defined in the problem collection. Show that the BIN PACKING problem cannot have an
a-approximation algorithm when a < 3/2.

Problem 6 (Designing Approximation Algorithms) Given is a graph G = (V. E)
consider the problem to find a subset of nodes C C V that maximises the size of the cut
induced by C, [6(C)|. This problem is known as the maximum cut problem. Design a
2-approximation algorithm for this problem. That is, your algorithm needs to compute, in
polynomial time, a set C* with |6(C*)| > %nmxcgv |6(C)|. Prove that your algorithm is
indeed a 2-approximation. (Hint: One possibility is to first consider a randomized algorithm.)

Problem 7 (True / False Questions) Which of the following claims is true or false,
assuming P # NP. Please explain your answer briefly, but precisely. That is, give a short
proof, or a counterexample.

(a) Consider a directed network G = (V, E) with s.t € V and nonnegative, integer edge
capacities w : £ — N so that the maximum (s.t)-flow f has value > 0. Claim: When
w(e) £ w(e') for any two e, e’ € F, there exists a unique minimum (s, t)-cut in G.

(b) Consider the KNAPSACK problem. and assume P = maX;=1,.nPi IS the maximal
profit value. Claim: If for some fixed ¢ there is an O( ntP)-time algorithm to solve the
KNAPSACK problem, then there is a polynomial time algorithm to solve SATISFIABILITY.

(¢) Let an undirected graph G = (V, E) be given, and w : E — N be non-negative, integer
edge weights. Claim: For any two s,¢ € V, there exists a minimum spanning tree T
that contains all the edges of a shortest (s, t)-path.

(d) A perfect matching M in an undirected graph G = (V, E) is a subset of non-incident
edges with M = |V|/2. Consider the decision problem PM that asks if a given graph G
does have a perfect matching. Claim: There exists a polynomial time reduction from
PM to the SATISFIABILITY problem.

Collection of Problems

MAXIMUM Frow Given is a directed graph G = (V, E) with edge capacities w : E — Z>o, and two
designated nodes s,f € V, the source and the target. The problem asks to compute a feasible
(s,t)-flow with maximum value. The decision version asks if a flow with value > k exists for
given k. There exist polynomial time algorithms for MAXIMUM FLOW.

Minmium Cost FLow Given is a directed graph ¢ = (V, E) with edge capacities w : £ — Z>o,
edge costs ¢ : £ — Z>p and node balances b : V' — Z. The problem is to find a feasible flow
that minimizes total costs. The decision version asks if a flow with cost < k exists for given
k. There exist polynomial time algorithms for MiniMUuM COST FLOW.



HAMILTONIAN PATH (CYCLE) Given an undirected graph G = (V| E), does there exist a simple
path (cycle) that visits each of the vertices exactly once? Both problems are (strongly)
NP-complete.

MATCHING Given an undirected graph G = (V| E), a matching M C E is a set of non-incident edges.
The mazimum matching problem is to find a matching M of G with maximum cardinality
|M|. The decision problem asks if, for a given k, a matching of size > k exists in (. Edmonds’
blossom shrinking algorithm solves the maximum matching problem in polynomial time.

KNAPSACK Given is a knapsack of weight capacity W € N, and n items with integral weights w;
and integral profits p;, all nonnegative. The decision problem is: Given an integer k, does
there exist a subset of the items that fits into the knapsack and has value at least k7 In other
words, does there exists a set S C {1,...,n} with >, cw; < W and }°,_opi > k? This
problem is NP-complete.

PartiTION Given are n integral, non-negative numbers ay, ..., an with 3% | a; = 2B. The decision
problem is to decide if there is a subset W C {1,..., n} such that 3,y a; = 3 4y a;. This
problem is NP-complete.

SUBSET SUM Given are n integral, non-negative numbers a;,....a,, and & € N. The decision
problem is to decide if there is a subset W C {1,...,n} such that 3°, . a; = k. This
problem is NP-complete.

SATISFIABILITY Given n Boolean variables z,,...,x,, and a formula F that consists of the con-
junction of m clauses C;, F = AT, C;. Each clause consists of the disjunction of some of the
variables x; (or their negation &), for example (s = (x1 V a4 V 27). The decision problem
is: Does there exist a truth assignment x € {false.true}™ such that F' =true? This problem
is (strongly) NP-complete.

VERTEX COVER Given is an undirected graph G = (V, E). A wvertex cover is a subset C' of the
nodes of V' such that for any edge e = {u,v} € F. at least one of the nodes u or v is in C.
The decision problem asks if a vertex cover (7 exists with || < k. This problem is (strongly)
NP-complete.

Maxmum Cur Given is an undirected graph & = (V, ). The question is to find a subset C C V
of the nodes of G that maximizes the number of edges in the cut induced by (', that is, a cut
that maximizes |§(C)|, where §(C) := {{u,v} € E | u € C,v ¢ C}. The decision problem is
to decide, for given k, if C' C V exists with |6(C)| > k, which is (strongly) NP-complete.

BIN PACKING Given is a set N = {1,...,n} of items with sizes s; € (0,1], s; € Q for every i € N.
The goal is to pack all items into unit-size bins such that the number of used bins is minimized.
Formally: find a partition of all items into k subsets Ny, ... Ny, such that 37, _, s <1 for
all £ =1,...,k, with k as small as possible. The decision problem asks if all items can be
packed into at most &k bins, for a given k € N,



