Exam “Discrete Optimization”
Monday, December 19, 2016, 13:30 — 16:30

Answers have to be in English.

e Use of calculators, mobile phones, and other electronic devices is not allowed.
e The exam consists of six problems. Please start a new page for every problem.
e The total number of points is 50.

1. Traveling Salesman Problem

Our goal is to find an approximation algorithm for MaxTSP:
Instance: undirected, complete graph G = (V| E') with edge weights w : E — R*.

Solution: a Hamiltonian cycle H C E of G.

Goal: maximize w(H) =5, w(e).
For an instance G = (V, E') and w of MaxTSP, let H* be a Hamiltonian cycle of G of
maximum weight.
To approximate MaxTSP, we use the following algorithm:
1. M=10
2: while E # () do
3: choose the heaviest edge e = {u,v} € E, breaking ties arbitrarily
4: M=MU {6}
5 remove all edges incident to w or v from E (thus, in particular, we remove e)
6: end while
7: connect the edges in M in an arbitrary way to obtain a Hamiltonian cycle H

In the following, we assume that the number n of nodes is even.

(a) (2 points) Let M* be a maximum-weight perfect matching of the graph G with
edge weights w.

Prove that w(M) > 1 - w(M?*).
(b) (2 points) Prove that w(M*) > % - w(H*).

(c) (2 points) Prove that the algorithm given above is a 4-approximation for MaxTSP
and has a running-time of O(n?logn).

2. Shortest Path Trees and Minimum Spanning
Trees

(6 points) Let G = (V, E) be a connected, undirected graph with non-negative edge
weights w. For v € V', let S, denote a shortest path tree rooted at v, i.e., .S, contains
shortest paths from v to all other nodes in GG. Note that .S, is not necessarily unique.
If S, is not unique, you are not allowed to choose which tree you get. This means
that the statement in the following must hold for all possible choices of S, for v € V.

Prove the following statement: There exists a minimum-weight spanning tree T" of

G with
T C U S,.

veV

(Here, we consider T" and S, for v € V as sets of edges.)

3. Min-Cost Flows

(10 points) For a flow network G = (V, E) with edge capacities u = (u.)ecp and
balances b = (b,),ey and a feasible flow f, let H;y = (V. Fy) be the following undirected
graph:

Fy = {{u,v} | both (u,v) and (v,u) are contained in Gy}.

Here, Gy denotes the residual network with flow f. This means that F’ contains an
undirected edge between nodes u and v if and only if both (u, v) are (v, u) are present
in G f-

We call a flow network G = (V) E) 2-cycle-free if there does not nodes u,v € V
with (u,v), (v,u) € E.

Prove that the following two statements are equivalent for all 2-cycle-free flow
networks G = (V, E) with edge capacities u = (u.)eer and balances b = (b,),ey and
feasible flows f of this network:

(I) There exist edge costs ¢ : E — R such that f is the unique minimum-cost flow
with respect to c¢ in this network.

(II) Hy is a forest.

4.

NP-Completeness

BCSP (short for “bicriteria shortest path”) denotes the following optimization prob-
lem:

Instance: directed graph G = (V, E), nodes s,t € V, costs ¢ : E — N, lengths

¢: E — N, cost budget C' € N.

Solution: s-t path @ with ¢(Q) =3_ _coc(e) < C.

Goal: minimize length £(Q) = > ., {(e).

The decision version of BCSP is the following problem: Given an instance of BCSP
and a number L € N, does there exist a solution @ with ¢(Q) < L?

(a)

(7 points) Prove that BCSP is NP-hard. You do not have to prove that the
decision version of BCSP is in NP.

Hint: Knapsack is the following NP-hard problem:

Instance: weights wy,...,w, € N, profits py,...,p,, bound W € N.
Solution: U C {1,...,n} with w(U) =3, ,w; <W.

Goal: maximize p(U) = > ..., pi.

The decision version of Knapsack is the following problem: Given an instance
of knapsack and a P € N, does there exist a feasible solution U with profit
p(U) > P?

(7 points) Devise an algorithm that solves BCSP and whose running-time is
bounded by a polynomial in C, the number n of vertices of G and the num-
ber m of edges of G. It suffices if your algorithm outputs the length of a shortest
path of costs at most C' — it is not necessary to output the path itself.

You do not have to give a proof of correctness, but you have to explain briefly
why your algorithm works and why it has the running-time that you claim.

5. 1-Trees

(5 points) Let G = (V, E) be an undirected graph with non-negative edge weights w.
A 1-tree of G is a connected subgraph L that has |V| = n edges. (The name 1-tree
comes from the fact that L consists of a spanning tree plus one additional edge.)

Consider the following algorithm:

1: compute a minimum spanning tree of GG with respect to w
2: let e be an edge of minimum weight among all edges in £\ T
3: L=TU {6}

Prove that this algorithm computes a 1-tree of minimum weight.

6. Miscellaneous Questions

Are the following statements true or false? Justify your answer. This justification
can be a short proof, a reference to a theorem of the lecture, a counterexample, ...

(a) (2 points) For all directed graphs G = (V, E') with non-negative edge weights w,
the following holds: If there is a unique edge e* € E of minimum weight, i.e.,
We = min{w, | e € E}, then for every v € V| there exists a shortest path tree
rooted at v that contains e*.

(b) (2 points) 1f there is a pseudo-polynomial algorithm for TSP, then there is a
polynomial-time algorithm for Knapsack.

(¢) (2 points) Let (S,Z) be an independent set system. This means that S is a finite
set and Z C P(S) satisfies (i) § € Z and (i) for all X and Y with Y C X € 7,
we have Y € 7.

If (S,Z) is not a matroid, then there exist weights for the elements in S such that
the greedy algorithm does not compute an independent set of maximum weight.

(d) (3 points) For all undirected, complete graphs G = (V, E') with edge weights w,
the following holds: There exists a number ¢ such that for all minimum spanning
trees T' of (G, we have

max{w, |e €T} =t.

