Test Chapter 1. Linear Structures 1. 2015-201300056-1A: Structures and Models

25 September 2015, 13:45-15:15
This test consists of 6 questions.
Total: 30 points. Mark=[number of points]/3

1. [3pt] $V=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right): a_{i} \in \mathbb{Q}, i=1,2, \ldots, n\right\}$. The addition and scalar multiplication are defined in a 'normal' way. Is V a vector space over \mathbb{R} ?
2. W is a subset of matrices in $M_{n \times n}(\mathbb{R})$ where the sum of the entries in each row is equal to zero:

$$
W=\left\{M \in M_{n \times n}(\mathbb{R}): \sum_{j=1}^{n} M_{i, j}=0, \quad i=1,2, \ldots, n\right\}
$$

(Here $M_{i, j}$ is the entry (i, j) of matrix M).
(a) [5pt] Show that W is a subspace of $M_{n \times n}(\mathbb{R})$.
(b) [2pt] What is the dimension of this subspace?
3. [5pt] V is a vector space, W is a subspace of V. Prove that if $S \subseteq W$, then $\operatorname{span}(S) \subseteq W$.
4. [5pt] Is the polynomial $x^{3}+11 x^{2}+9 x+7$ a linear combination of the polynomials in $S=\left\{x^{3}-x^{2}+x-1, x^{3}+2 x^{2}+3 x+1, x^{2}-2 x+2\right\}$? If so, determine the corresponding coefficients. If not, why not?
5. [5pt] Check whether the set $S=\{(1,1,1),(-1,0,2),(2,3,4),(-1,0,0)\}$ contains a basis for \mathbb{R}^{3}. If so, give an example of a basis consisting of vectors in S. If not, why not?
6. [5pt] $S \subseteq V$ is a linearly independent set, $v \in \operatorname{span}(S)$. Prove that v can be uniquely written as

$$
v=a_{1} u_{1}+a_{2} u_{2}+\cdots+a_{n} u_{n}
$$

where $u_{1}, u_{2}, \ldots, u_{n} \in S$ and $a_{1}, a_{2}, \ldots, a_{n} \in F$.

