Linear Structures 1. 2015-201300056-1A: Structures and Models Thursday 5 November 2015; 8:45-11:45 a.m.

This exam consists of 8 questions. All answers must be justified.
A (graphical) calculator may be used only for checking your answers.

1. [2pt] A set V consists of vectors $\left(a_{1}, a_{2}\right)$ where $a_{1}, a_{2} \in \mathbb{R}$. Addition and scalar multiplication are defined as follows:

$$
\left(a_{1}, a_{2}\right)+\left(b_{1}, b_{2}\right)=\left(0,-a_{1}-b_{1}\right), \quad c\left(a_{1}, a_{2}\right)=\left(c a_{1}, c a_{2}\right), \quad c \in \mathbb{R} .
$$

Is V a vector space over \mathbb{R} ? Justify your answer.
2. [3pt] Given is $S \subset M_{2 \times 2}(\mathbb{R})$:

$$
S=\left\{\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{rr}
1 & 3 \\
2 & -1
\end{array}\right)\right\}
$$

Determine whether S is a basis for $M_{2 \times 2}(\mathbb{R})$.
3. [4pt] Prove that a set of two or more vectors is linearly dependent if and only if one of these vectors can be written as a linear combination of the other vectors.
4. A transformation $T: P_{2}(\mathbb{R}) \rightarrow P_{3}(\mathbb{R})$ is given by

$$
T(f(x))=x f(x)+f^{\prime}(x), \quad f(x) \in P_{2}(\mathbb{R}) .
$$

(a) [2pt] Take $\beta=\left\{1, x, x^{2}\right\}$ as ordered basis for $P_{2}(\mathbb{R})$ and $\gamma=\left\{1, x, x^{2}, x^{3}\right\}$ as ordered basis for $P_{3}(\mathbb{R})$. Determine $[T]_{\beta}^{\gamma}$.
(b) [2pt] Verify that $[T(f(x))]_{\gamma}=[T]_{\beta}^{\gamma}[f(x)]_{\beta}$ for $f(x)=x^{2}+2 x+1$.
5. V and W are vector spaces, $T: V \rightarrow W$ is a linear transformation.
(a) [3pt] Prove that $N(T)$ is a subspace of V.
(b) [3pt] Prove that if T is one-to-one, then $\operatorname{dim}(V) \leq \operatorname{dim}(W)$.
6. Consider a linear system $A x=b$:

$$
\begin{array}{rllllr}
x_{1} & +2 x_{2} & -x_{3} & +3 x_{4} & & =1 \\
-x_{1} & +4 x_{2} & -5 x_{3} & +9 x_{4} & -6 x_{5} & =-6 \\
2 x_{1} & +2 x_{2} & & +3 x_{4} & +2 x_{5} & =4
\end{array}
$$

(a) $[4 \mathrm{pt}]$ Solve the system. Find the general solution of this system.
(b) [2pt] Determine the rank of A. Determine r linearly independent columns of A, where $r=\operatorname{rank}(A)$.
(c) [2pt] Give an example of a 5×3 matrix B such that $B \neq O$ and $A B=O$, where O is a zero matrix.
7. [2pt] A, B are $n \times n$ matrices. Prove that if $A B$ is invertible, then both A and B are invertible.
8. Consider the matrix

$$
A=\left(\begin{array}{rrrr}
1 & 2 & 3 & 4 \\
-2 & -4 & -6 & \alpha \\
1 & 0 & 2.5 & 7 \\
-2 & 2 & 2 & 0
\end{array}\right)
$$

(a) [3pt] Determine $\operatorname{det}(A)$.
(b) [2pt] For which α is it true that $\lambda=0$ is an eigenvalue of A ?
(c) [2pt] Is the vector $(1,-2,2,0)$ an eigenvector of A ?

Total: 36 points
NB: mark=[[number of points]+4)]/4, rounded to a whole number.

