Linear Structures 1. 2015-201300056-1A: Structures and Models Thursday 5 November 2015; 8:45 - 11:45 a.m.

This exam consists of 8 questions. All answers must be justified. A (graphical) calculator may be used only for checking your answers.

1. [2pt] A set *V* consists of vectors (a_1, a_2) where $a_1, a_2 \in \mathbb{R}$. Addition and scalar multiplication are defined as follows:

 $(a_1, a_2) + (b_1, b_2) = (0, -a_1 - b_1), \quad c(a_1, a_2) = (ca_1, ca_2), \quad c \in \mathbb{R}.$

Is V a vector space over \mathbb{R} ? Justify your answer.

2. [3pt] Given is $S \subset M_{2 \times 2}(\mathbb{R})$:

$$S = \left\{ \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right), \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right), \left(\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 1 & 3 \\ 2 & -1 \end{array} \right) \right\}.$$

Determine whether *S* is a basis for $M_{2\times 2}(\mathbb{R})$.

- **3.** [4pt] Prove that a set of two or more vectors is linearly dependent if and only if one of these vectors can be written as a linear combination of the other vectors.
- **4.** A transformation $T: P_2(\mathbb{R}) \to P_3(\mathbb{R})$ is given by

$$T(f(x)) = xf(x) + f'(x), \quad f(x) \in P_2(\mathbb{R}).$$

- (a) [2pt] Take $\beta = \{1, x, x^2\}$ as ordered basis for $P_2(\mathbb{R})$ and $\gamma = \{1, x, x^2, x^3\}$ as ordered basis for $P_3(\mathbb{R})$. Determine $[T]_{\beta}^{\gamma}$.
- (b) [2pt] Verify that $[T(f(x))]_{\gamma} = [T]_{\beta}^{\gamma}[f(x)]_{\beta}$ for $f(x) = x^2 + 2x + 1$.
- **5.** *V* and *W* are vector spaces, $T: V \to W$ is a linear transformation.
- (a) [3pt] Prove that N(T) is a subspace of V.
- (b) [3pt] Prove that if T is one-to-one, then $\dim(V) \leq \dim(W)$.

see the other side

6. Consider a linear system Ax = b:

x_1	$+2x_{2}$	$-x_3$	$+3x_{4}$		=1
$-x_1$	$+4x_{2}$	$-5x_{3}$	$+9x_{4}$	$-6x_{5}$	= -6
$2x_1$	$+2x_{2}$		$+3x_{4}$	$+2x_{5}$	= 4

- (a) [4pt] Solve the system. Find the general solution of this system.
- (b) [2pt] Determine the rank of *A*. Determine *r* linearly independent columns of *A*, where $r = \operatorname{rank}(A)$.
- (c) [2pt] Give an example of a 5×3 matrix *B* such that $B \neq O$ and AB = O, where *O* is a zero matrix.
- **7.** [2pt] *A*, *B* are $n \times n$ matrices. Prove that if *AB* is invertible, then both *A* and *B* are invertible.
- 8. Consider the matrix

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ -2 & -4 & -6 & \alpha \\ 1 & 0 & 2.5 & 7 \\ -2 & 2 & 2 & 0 \end{pmatrix}.$$

- (a) [3pt] Determine det(A).
- (b) [2pt] For which α is it true that $\lambda = 0$ is an eigenvalue of A?
- (c) [2pt] Is the vector (1, -2, 2, 0) an eigenvector of A?

Total: 36 points

NB: mark=[[number of points]+4)]/4, rounded to a whole number.