Resit.

Linear Structures 1. 2015-201300056-1A: Structures and Models Monday 4 January 2016

This exam consists of 10 questions. All answers must be justified. A (graphical) calculator may be used only for checking your answers.

1. [5pt] Given is a set $V = \{(a_1, a_2) : a_1, a_2 \in \mathbb{R}\}$. The addition and scalar multiplication are defined as follows:

 $(a_1, a_2) + (b_1, b_2) = (2a_1 + 2b_1, a_2 + b_2), \quad c(a_1, a_2) = (ca_1, ca_2), \ c \in \mathbb{R}.$

Prove that *V* is not a vector space by proving that one of the following properties is not satisfied:

(VS 7) For all $u, v \in V$, $c \in F$, c(u + v) = cu + cv. (VS 8) For all $v \in V$, $c, d \in F$, (c + d)v = cv + dv.

- 2. [5pt] Give the definition of linear independence.
- **3.** [10pt] Determine whether the set $\{(1, 2, 3, 1), (1, 3, 4, 2), (1, -1, 1, 2), (3, 2, 1, 3)\}$ is a basis for \mathbb{R}^4 .
- **4.** [5pt] $T : V \to W$ is a linear transformation. Prove that the null space N(T) is a subspace of V.
- **5.** [5pt] A linear transformation $T : V \to W$ is an isomorphism. Prove that $\dim(V) = \dim(W)$.
- **6.** $P_2(\mathbb{R}) \to M_{2 \times 2}(\mathbb{R})$ is given by

$$T(ax^{2} + bx + c) = \begin{pmatrix} a & b + c \\ b + c & -a \end{pmatrix}$$

- (a) [5pt] Which statement out of i)-iv) is true: i) *T* is one-to-one, ii) *T* is onto, iii) *T* is both one-to-one and onto, iv) *T* is neither one-to-one nor onto?
- (b) [5pt] Determine $[T]^{\gamma}_{\beta}$ where β is the standard basis for $P_2(\mathbb{R})$ and γ is the standard basis for $M_{2\times 2}(\mathbb{R})$.
- (c) [5pt] Show that $[T(x^2 + 2x + 1)]_{\gamma} = [T]^{\gamma}_{\beta}[x^2 + 2x + 1]_{\beta}$.

7. [10pt] Ax = b is a linear system, K is the set of solutions and K_H is a set of solutions to the homogeneous system Ax = 0. Prove that

$$K = \{s\} + K_H,$$

where s is a particular solution to Ax = b. (Here $S + U = \{s + u : s \in S, u \in U\}$).

8. Denote by \underline{a}_j , j = 1, 2, 3, 4, 5, column j of a 4×5 matrix A. Given is:

$$\underline{a}_1 = \begin{pmatrix} 1\\0\\-1\\-3 \end{pmatrix}, \ \underline{a}_2 = \begin{pmatrix} 0\\5\\0\\2 \end{pmatrix}, \ \underline{a}_4 = \begin{pmatrix} -2\\1\\1\\0 \end{pmatrix}.$$

The reduced row echelon form of the augmented matrix $(A \ b)$ of the system Ax = b is as follows:

- (a) [5pt] Write the solution to this system in a parametric vector form.
- (b) [10pt] Compute the other two columns of matrix A and the vector b.
- **9.** A is a 7×3 and B is a 3×7 matrix.
- (a) [5pt] Determine the dimensions of AB. Show that each row of AB is a linear combination of the rows of B.
- (b) [5pt] What can you tell about rank (AB)? Justify your answer.
- **10.** [10pt] Consider the matrix:

$$A = \left(\begin{array}{cc} 2 & 1\\ 1 & 2 \end{array}\right).$$

Determine the eigenvalues and the associated eigenvectors of matrix A.

Total: 90 points

NB: mark=([number of points]+10)/10.