Resit.

Linear Structures 1. 2015-201300056-1A: Structures and Models Monday 4 January 2016

This exam consists of 10 questions. All answers must be justified. A (graphical) calculator may be used only for checking your answers.

1. [5pt] Given is a set $V=\left\{\left(a_{1}, a_{2}\right): a_{1}, a_{2} \in \mathbb{R}\right\}$. The addition and scalar multiplication are defined as follows:

$$
\left(a_{1}, a_{2}\right)+\left(b_{1}, b_{2}\right)=\left(2 a_{1}+2 b_{1}, a_{2}+b_{2}\right), \quad c\left(a_{1}, a_{2}\right)=\left(c a_{1}, c a_{2}\right), c \in \mathbb{R} .
$$

Prove that V is not a vector space by proving that one of the following properties is not satisfied:
(VS 7) For all $u, v \in V, c \in F, c(u+v)=c u+c v$.
(VS 8) For all $v \in V, c, d \in F,(c+d) v=c v+d v$.
2. [5pt] Give the definition of linear independence.
3. [10pt] Determine whether the set $\{(1,2,3,1),(1,3,4,2),(1,-1,1,2),(3,2,1,3)\}$ is a basis for \mathbb{R}^{4}.
4. [5pt] $T: V \rightarrow W$ is a linear transformation. Prove that the null space $N(T)$ is a subspace of V.
5. [5pt] A linear transformation $T: V \rightarrow W$ is an isomorphism. Prove that $\operatorname{dim}(V)=$ $\operatorname{dim}(W)$.
6. $P_{2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ is given by

$$
T\left(a x^{2}+b x+c\right)=\left(\begin{array}{cc}
a & b+c \\
b+c & -a
\end{array}\right) .
$$

(a) [5pt] Which statement out of i)-iv) is true: i) T is one-to-one, ii) T is onto, iii) T is both one-to-one and onto, iv) T is neither one-to-one nor onto?
(b) [5pt] Determine $[T]_{\beta}^{\gamma}$ where β is the standard basis for $P_{2}(\mathbb{R})$ and γ is the standard basis for $M_{2 \times 2}(\mathbb{R})$.
(c) [5pt] Show that $\left[T\left(x^{2}+2 x+1\right)\right]_{\gamma}=[T]_{\beta}^{\gamma}\left[x^{2}+2 x+1\right]_{\beta}$.
7. [10pt] $A x=b$ is a linear system, K is the set of solutions and K_{H} is a set of solutions to the homogeneous system $A x=0$. Prove that

$$
K=\{s\}+K_{H},
$$

where s is a particular solution to $A x=b$. (Here $S+U=\{s+u: s \in S, u \in U\}$).
8. Denote by $\underline{a}_{j}, j=1,2,3,4,5$, column j of a 4×5 matrix A. Given is:

$$
\underline{a}_{1}=\left(\begin{array}{c}
1 \\
0 \\
-1 \\
-3
\end{array}\right), \underline{a}_{2}=\left(\begin{array}{l}
0 \\
5 \\
0 \\
2
\end{array}\right), \underline{a}_{4}=\left(\begin{array}{c}
-2 \\
1 \\
1 \\
0
\end{array}\right)
$$

The reduced row echelon form of the augmented matrix $(A b)$ of the system $A x=b$ is as follows:

$$
\left(\begin{array}{cccccc}
1 & 0 & 1 & 0 & 3 & 0 \\
0 & 1 & -2 & 0 & 1 & 7 \\
0 & 0 & 0 & 1 & 1 & 4 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

(a) [5pt] Write the solution to this system in a parametric vector form.
(b) [10pt] Compute the other two columns of matrix A and the vector b.
9. A is a 7×3 and B is a 3×7 matrix.
(a) [5pt] Determine the dimensions of $A B$. Show that each row of $A B$ is a linear combination of the rows of B.
(b) [5pt] What can you tell about rank ($A B$)? Justify your answer.
10. [10pt] Consider the matrix:

$$
A=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)
$$

Determine the eigenvalues and the associated eigenvectors of matrix A.

Total: 90 points
NB: mark=([number of points]+10)/10.

