Test Chapter 1. Linear Structures 1. 2016-201300056-1A: Structures and Models

> 30 September 2015, 13:45-15:15 This test consists of 6 problems.
> Total: 30 points. Grade $=[$ number of points]/3

1. [5pt] $S=\left\{\left(a_{1}, a_{2}\right): a_{1}, a_{2} \in \mathbb{R}\right\}$, and the addition and the scalar multiplication are defined as follows:

$$
\begin{gathered}
\left(a_{1}, a_{2}\right)+\left(b_{1}, b_{2}\right)=\left(a_{1}+b_{1}, a_{2}+b_{2}\right), \\
c\left(a_{1}, a_{2}\right)=\left(c\left|a_{1}\right|, c a_{2}\right) .
\end{gathered}
$$

Is S a vector space over \mathbb{R} ? Why or why not?
2. S is a subset of a vector space V. Prove that $\operatorname{span}(S)$ is a subspace of V.

* 3. [5pt] S_{1} and S_{2} are linear independent subsets of V. Prove that $S_{1} \cap S_{2}$ is also a linear independent subset of V.

4. [5pt] Is the set of polynomials $S=\left\{x^{3}+2 x, x^{3}+x^{2}+x, x^{2}-x+1, x^{3}+2 x+2\right\}$ a basis for $P_{3}(\mathbb{R})$?
5. [5pt] The set of matrices S is defined as follows:

$$
S=\left\{\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{cc}
-1 & 1 \\
0 & 2
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 2
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\right\} .
$$

Can the matrix $\left(\begin{array}{ll}0 & 4 \\ 0 & 2\end{array}\right)$ be written as a linear combination of the matrices in S ? If yes, find the coefficients. If not, why not?
6. [5pt] Let $\beta=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be a subset of a vector space V. Furthermore, suppose that for any $v \in V$ there exist unique $a_{1}, a_{2}, \ldots, a_{n}$ such that

$$
v=a_{1} u_{1}+a_{2} u_{2}+\cdots+a_{n} u_{n} .
$$

Prove that β is a basis for V.

