Partial Test 1, Lineaire Structures II, 201300057

Date	:	25 november 2016
Place	:	NH-209
Time	:	13.45 - 15.15
Module-coordinator	:	B. Manthey
Instructor	:	H. Zwart

All answers must be motivated. The use of (Scientific) calculator, formula sheet, or notes is not allowed.

1. Given is the (complex) linear space V spanned by the functions: $\{e^{ix}, xe^{ix}, x, 1\}$. On this space we consider the linear mapping

T(f) = f' + (1 - i)f.

- (a) Determine eigenvalues en eigenvectors of T.
- (b) Is T diagonalizable?
- (c) Is T^{-1} diagonalizable?
- 2. Let T be a linear operator from V to V, and let $W \subset V$ be a linear subspace of V which is T-invariant. We denote by T_W the linear operator T restricted to W, i.e., $T_W: W \mapsto W$ and $T_W(w) = T(w), w \in W$.
 - (a) Prove that W is also T^2 -invariant.
 - (b) Show that if T is invertible, then the same holds for T_W . Is the converse true as well?
- 3. Let $S_{2\times 2}(\mathbb{R})$ be the linear space consisting of all 2×2 symmetric (real) matrices with the (candidate) inner product

$$\langle P, Q \rangle = 11p_{11}q_{11} + 12p_{12}q_{12} + 22p_{22}q_{22}.$$
 (1)

(a) Prove that (1) defines an inner product on $S_{2\times 2}(\mathbb{R})$.

a 6 a b 3 b

c 4

- (b) Construct an element of $S_{2\times 2}(\mathbb{R})$ with length 12 which is orthogonal to $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
- (c) Does (1) define an inner product on $M_{2\times 2}(\mathbb{R})$, the linear space consisting of all 2×2 (real) matrices?

3

b 4

3

*		Poir	nts 1		
x.1		Ex	Ex.		
	6	a	4	a	Γ

¹Total is 40. You will get 4 points for free

1