Partial Test 1, Lineaire Structures II, 201300057

Date	$:$
Place	$:$ NH-209 november 2016
Time	$:$
Module-coordinator	$:$
B. Manthey	
Instructor	$:$
	H. Zwart

All answers must be motivated.

The use of (Scientific) calculator, formula sheet, or notes is not allowed.

1. Given is the (complex) linear space V spanned by the functions: $\left\{\mathrm{e}^{i x}, x \mathrm{e}^{i x}, x, 1\right\}$. On this space we consider the linear mapping

$$
T(f)=f^{\prime}+(1-i) f .
$$

(a) Determine eigenvalues en eigenvectors of T.
(b) Is T diagonalizable?
(c) Is T^{-1} diagonalizable?
2. Let T be a linear operator from V to V, and let $W \subset V$ be a linear subspace of V which is T-invariant. We denote by T_{W} the linear operator T restricted to W, i.e., $T_{W}: W \mapsto W$ and $T_{W}(w)=T(w), w \in W$.
(a) Prove that W is also T^{2}-invariant.
(b) Show that if T is invertible, then the same holds for T_{W}. Is the converse true as well?
3. Let $S_{2 \times 2}(\mathbb{R})$ be the linear space consisting of all 2×2 symmetric (real) matrices with the (candidate) inner product

$$
\begin{equation*}
\langle P, Q\rangle=11 p_{11} q_{11}+12 p_{12} q_{12}+22 p_{22} q_{22} \tag{1}
\end{equation*}
$$

(a) Prove that (1) defines an inner product on $S_{2 \times 2}(\mathbb{R})$.
(b) Construct an element of $S_{2 \times 2}(\mathbb{R})$ with length 12 which is orthogonal to $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
(c) Does (1) define an inner product on $M_{2 \times 2}(\mathbb{R})$, the linear space consisting of all 2×2 (real) matrices?

Points 1				
Ex.1			Ex. 2	
Ex. 3				
a	6	a	4	a

[^0]
[^0]: ${ }^{1}$ Total is 40 . You will get 4 points for free

