Test 2, Linear Structures II, 201300057

Date	:	December 23, 2016
Place	:	Therm
Time	:	13.45 - 15.15
Module-coordinator	:	B. Manthey
Instructor	:	H. Zwart

All answers must be motivated. The use of (Scientific) calculator, formula sheet, or notes is not allowed.

- 1. Given the complex inner product space V. Let T be an operator from V to V.
 - (a) Prove that if T is self-adjoint, then $\langle Tx, x \rangle$ is real for all $x \in V$.
 - (b) Prove that if $\langle Tx, x \rangle$ is real for all $x \in V$, then T is self-adjoint.
- 2. Given the complex linear space V spanned by the functions: $\{e^{-x}, e^{-2x}\}$. On this space we have the inner product

$$\langle f,g \rangle = \int_0^\infty f(x)\overline{g(x)}dx.$$
 (1)

- (a) Construct an orthonormal basis of V.
- (b) On the space V we consider the linear operator (the first derivative)

$$Tf = \frac{df}{dx}.$$

Is T normal?

- 3. Label the following statements as true or false. If true, provide a proof, and when false provide a counter example. In all the items V is a complex inner product space.
 - (a) If U_1 and U_2 are unitary operators on V, then U_2U_1 is also unitary.
 - (b) The eigenvalues of a normal operator have modulus one.
 - (c) If the self-adjoint operator T satisfies $T^3 = 0$, then T = 0.

1 Ontos								
Ex	c.1	Ex. 2		Ex. 3				
a	4	a	6	a	4			
b	6	b	6	b	4			

Points¹

¹Total is 40. You will get 4 points for free

1