Test 2, Linear Structures II, 201300057

Date	$:$	December 23, 2016
Place	$:$	Therm
Time	$:$	$13.45-15.15$
Module-coordinator	$:$	B. Manthey
Instructor	$:$	H. Zwart

All answers must be motivated.

The use of (Scientific) calculator, formula sheet, or notes is not allowed.

1. Given the complex inner product space V. Let T be an operator from V to V.
(a) Prove that if T is self-adjoint, then $\langle T x, x\rangle$ is real for all $x \in V$.
(b) Prove that if $\langle T x, x\rangle$ is real for all $x \in V$, then T is self-adjoint.
2. Given the complex linear space V spanned by the functions: $\left\{\mathrm{e}^{-x}, \mathrm{e}^{-2 x}\right\}$. On this space we have the inner product

$$
\begin{equation*}
\langle f, g\rangle=\int_{0}^{\infty} f(x) \overline{g(x)} d x \tag{1}
\end{equation*}
$$

(a) Construct an orthonormal basis of V.
(b) On the space V we consider the linear operator (the first derivative)

$$
T f=\frac{d f}{d x}
$$

Is T normal?
3. Label the following statements as true or false. If true, provide a proof, and when false provide a counter example. In all the items V is a complex inner product space.
(a) If U_{1} and U_{2} are unitary operators on V, then $U_{2} U_{1}$ is also unitary.
(b) The eigenvalues of a normal operator have modulus one.
(c) If the self-adjoint operator T satisfies $T^{3}=0$, then $T=0$.

Points ${ }^{1}$

Ex.1		Ex. 2		Ex. 3	
a	4	a	6	a	4
b	6	b	6	b	4
				c	6

[^0]
[^0]: ${ }^{1}$ Total is 40 . You will get 4 points for free

