Exam Linear Structures II, 201700140.

Date : Februari 1, 2018 Place : Sportcentrum Time : 08.45 - 11.45

All answers must be motivated.

The use of (Scientific) calculator, formula sheet, or notes is not allowed.

1. Given the (complex) linear space spanned by $\{\sin(x), \cos(x), e^{2x}\}$. On this space we define the linear mapping T as the derivative, i.e.,

$$T(f) = \frac{df}{dx}.$$

- (a) Determine the eigenvalues and eigenvectors of T.
 - (b) Prove that T is diagonisable.
 - (c) Determine the eigenvalues of the inverse of T.
- 2. Let Z be the linear space of 2 by 2 complex matrices. On this space we define the following (candidate) inner product

$$\left\langle \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} \right\rangle = (A_{11} + A_{12})\overline{(B_{11} + B_{12})} + 2(A_{12} + A_{21})\overline{(B_{12} + B_{21})} + 3A_{21}\overline{B_{21}} + 4A_{22}\overline{B_{22}}.$$
(1)

- (a) Show that (1) defines an inner product on Z.
- (b) Let W be the linear subspace spanned by $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$. Determine an orthonormal basis of W.
- (c) Determine a non-zero element in W^{\perp} .
- 3. Let V be a linear space, and let W and Y be two linear subspaces of V. Furthermore, let T be an operator on V. We assume that both W and Y are T-invariant.
 - (a) Prove that $W \cap Y$ is T-invariant.
 - (b) Assume now that W is one-dimensional and is spanned by w. Show that w is an eigenvector of T.
- 4. Let A be an $n \times n$ matrix with characteristic polynomial $p(t) = (-1)^n (t^n + a_{n-1}t^{\frac{n}{2}n-1} + \cdots + a_1t + a_0)$.

Prove that A is invertible if and only if $a_0 \neq 0$.

Z.O.Z.

- 5. Let V be a finite-dimensional complex inner product space, and let Q be a normal operator on V.
 - (a) Prove that for every $\lambda \in \mathbb{C}$ the operator $Q + \lambda I$ is normal.
 - (b) Prove that the null spaces of Q and Q^* are the same, i.e., prove that $N(Q) = N(Q^*)$.
 - (c) Prove that if v is an eigenvector of Q associated to the eigenvalues λ , then v is an eigenvector of Q^* , but now with eigenvalue $\overline{\lambda}$.
- Check whether the following statements are true or false. If true, provide a proof. If false, give a proof or counter example.
 - (a) Let Q be a normal operator on the complex inner product space V which is invertible. Then Q is unitary.
 - (b) Let S be a normal operator on the complex inner product space V with all eigenvalues real. Then S is self-adjoint.
 - (c) If U and R are unitary operators on the complex inner product space V, then $U^{-1}R$ is unitary.
 - (d) Let T be the operator from Exercise 1. There exists an inner product on the space spanned by $\{\sin(x), \cos(x), e^x\}$ such that T becomes self-adjoint.

Points¹

Ex. 1		Ex. 2		Ex. 3		Ex. 4	Ex. 5		Ex. 6	
a b	8 4	a b c	8 8 4	a b	4 5	6	a b c	4 6 6	a b c	5 5 5
c	5		1		o F	dering the	(all		d	5

¹Total is 100. You get 10 points for free