Partial Test 2, Lineaire Structures II, 201700140

H. Zwart

Date : 22 december 2017 Place : Sportcentrum

Time : 13.45 - 15.15Module-coordinator : J. de Jong

Instructor

All answers must be motivated.

The use of (Scientific) calculator, formula sheet, or notes is not allowed.

1. Let Z be the linear space of 2 by 2 real matrices, with inner product

$$\left\langle \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} \right\rangle = (A_{11} + A_{12})(B_{11} + B_{12}) + 2(A_{12} + A_{21})(B_{12} + B_{21}) + 3A_{21}B_{21} + 4A_{22}B_{22}.$$

$$(1)$$

(a) Define on Z the linear operator T as taking the transpose, i.e.,

$$T(A) = A^t, \qquad A \in Z.$$

Is T a self-adjoint operator on Z?

Now we define the subspace W of Z as

$$W = \{ Q \in Z \mid Q_{21} = Q_{22} = 0 \}.$$

- (b) Determine a basis of W that is orthonormal with respect to (1).
- (c) Given is $U = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$. Determine the best approximation of U in W, that is determine the orthogonal projection of U on W.
- 2. Let V be a real inner product space.
 - (a) Show that the following relation holds between the inner product and its associated norm

$$4\langle x, y \rangle = ||x + y||^2 - ||x - y||^2$$
, for all $x, y \in V$.

(b) Let T be a linear operator on V. Prove the following equivalence

$$||T(x)|| = ||x|| \quad \text{for all } x \in V$$

$$\Leftrightarrow$$

$$\langle T(x), T(y) \rangle = \langle x, y \rangle \quad \text{for all } x, y \in V$$

P.T.O.

3. Let Q be a linear operator on the finite-dimensional (complex) inner product space V. We assume that Q satisfies

$$Q^* = Q^2. (2)$$

- (a) Prove that Q is normal.
- (b) Calculate all the (possible) complex eigenvalues of Q.
- (c) Show that if Q is invertible, then $Q^3 = I$.

Points ¹

Ex.1		Ex. 2		Ex. 3	
a	4	a	4	a	3
b	5	b	6	b	6
\mathbf{c}	5			c	3

¹Total is 40. You will get 4 points for free