Test Linear Structures II

Date : December 15, 2020 Time : 09.00 - 12.00

All answers must be motivated. The use of (Scientific) calculator, formula sheet, or notes is not allowed.

- 1. For $a \in \mathbb{R}, b \in \mathbb{R}$, consider matrix $A = \begin{bmatrix} 1 & a \\ 0 & b \end{bmatrix}$
 - (a) Determine the eigenvalues of A.
 - (b) For which values of a and b is A diagonisable?
- 2. Consider the following matrix

$$A = \begin{bmatrix} 1 & A_{12} & A_{13} & A_{14} \\ 0 & 1 & A_{23} & A_{24} \\ 0 & 0 & 1 & A_{34} \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

We consider the powers of A, and define $B = A^2$, $C = A^3$, and $D = A^4$. Furthermore, of a matrix Q, we denote the (i, j)-th element by Q_{ij} .

Prove that

$$6B_{14} + D_{14} = 4A_{14} + 4C_{14}.$$

- 3. Let V be a complex inner product space and let T be a linear mapping from V to V. Prove that if the subspace W is T-invariant, then W^{\perp} is T^* -invariant.
- 4. Consider the set of polynomials of degree 2 or lower with complex coefficients, $\mathbb{P}_2(\mathbb{C})$. On this space we define the (candidate) inner product

$$\langle p, q \rangle = p(0)\overline{q(0)} + \int_0^1 p'(x)\overline{q'(x)}dx. \tag{1}$$

where q'(x) denotes the derivative of q(x)

- (a) Show that (1) defines an inner product on $\mathbb{P}_2(\mathbb{C})$.
- (b) Let $W \subset \mathbb{P}_2(\mathbb{C})$ be the subspace containing all constant polynomials. Determine (with respect to the inner product (1)) the orthogonal complement of W.
- (c) Does the following define an inner product on $\mathbb{P}_2(\mathbb{C})$

$$\langle p, q \rangle = \overline{p(0)}q(0) + \int_0^1 \overline{p'(x)}q'(x)dx?$$

Z.O.Z.

- 5. Consider as in the previous exercise the set of polynomials of degree 2 or lower with complex coefficients, $\mathbb{P}_2(\mathbb{C})$. On this space we define the inner product as given in (1). Let Z be the subspace consisting of polynomials of degree 1 or lower.
 - (a) Construct an orthonormal basis of Z.
 - (b) Let $q(x) = x^2$. Determine the orthogonal projection of q on Z.
- 6. On the inner product space of the previous two exercises, we define the following operator

$$(S(p))(x) = p(-x).$$

Thus S mirrors the function in the vertical axis.

Is S self-adjoint?

- 7. Check whether the following statements are true or false. If true, provide a proof. If false, give a proof or counter example.
 - (a) If matrix A is unitarily equivalent to matrix B, then B is unitarily equivalent to A.
 - (b) Any operator T for which $T=T^2$ (projection) has only the eigenvalues 0 and 1.
 - (c) If the $n \times n$ matrix A has as only eigenvalue -1, then A is unitary.
 - (d) Consider an operator T on an inner product space V. If T(v) = -v for all $v \in V$, then T is normal for any inner product on V.

Points¹

E	c. 1	Ex. 2	Ex. 3	Ex. 4		Ex. 5		Ex. 6	Ex. 7	
a b	2 10	8	8	a b c	8 6 4	a b	6	8	a b	6 6
								interest (d	6

¹Total is 100. You get 10 points for free