Resit Linear Structures II

Date : February 2, 2022 Time : 13.45 - 16.45

All answers must be motivated.

The use of (Scientific) calculator, formula sheet, or notes is not allowed.

1. Consider matrix $A = \begin{bmatrix} 2 & 3 & 1 & 4 \\ 2 & 1 & 3 & 4 \\ 1 & 1 & 2 & 1 \\ 2 & 2 & 2 & 1 \end{bmatrix}$.

where D is a diagonal matrix, and the first column of P equals $\begin{bmatrix} -1\\1\\0\\0 \end{bmatrix}$.

Determine the first column of D. Hint: It is not necessary to compute P or D.

- 2. Consider operator T on 2-dimensional vector space V. Prove the following statement: Either T = cI for some scalar c, or there exists some vector $\mathbf{v} \in V$ for which V is the T-cyclic subspace generated by \mathbf{v} .
- 3. Consider the following candidate inner products on \mathbb{C}^2 :

$$\begin{split} \langle \mathbf{u}, \mathbf{v} \rangle_0 &= 0 \text{ for all } \mathbf{u}, \mathbf{v} \in \mathbb{C}^2 \\ \langle \mathbf{u}, \mathbf{v} \rangle_1 &= 1 \text{ for all } \mathbf{u}, \mathbf{v} \in \mathbb{C}^2 \end{split}$$

- (a) Prove that $\langle \mathbf{u}, \mathbf{v} \rangle_1 = 1$ is not an inner product on any subspace of \mathbb{C}^2 .
- (b) Prove that $\langle \mathbf{u}, \mathbf{v} \rangle_0$ is an inner product on $\left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$. (The subspace of \mathbb{C}^2 that contains only the zero-vector)
- (c) Prove that $\langle \mathbf{u}, \mathbf{v} \rangle_0$ is not an inner product on any subspace of \mathbb{C}^2 other than $\left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$.

Turn over page

- 4. Check whether the following statements are true or false. If true, provide a proof. If false, give a proof or counterexample. Any proofs are not allowed to reference Theorem 6.4 (which states that Gram-Schmidt yields an orthonormal basis).
 - S1) For any inner product space V, for any vectors $\mathbf{u}, \mathbf{v} \in V$: \mathbf{v} and $\mathbf{u} \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{||\mathbf{v}||^2} \mathbf{v}$ are orthogonal.
 - S2) For any inner product space V, for any vectors $\mathbf{u}, \mathbf{v} \in V$: \mathbf{v} and $\mathbf{u} \frac{\langle \mathbf{v}, \mathbf{u} \rangle}{||\mathbf{v}||^2} \mathbf{v}$ are orthogonal.
- 5. Consider the vector space $V = \text{span}\{\sin(x), \cos(x)\}$ and differential operator T(f) = f'. Show that T is not self-adjoint under any inner product on V.
- 6. Check whether the following statements are true or false. If true, provide a proof. If false, give a proof or counterexample.
 - (a) The zero-operator T_0 is normal on any finite-dimensional inner product space.
 - (b) Let T be a self-adjoint operator on a finite-dimensional inner product space. If $T^3 = I$, then T = I.
 - (c) Let U and T be linear operators. If UT is unitary, then U and T are unitary.
 - (d) If matrix A is unitarily equivalent to matrix B, then B is unitarily equivalent to A.

Points¹

Ex. 1	Ex. 2	Ex. 3		Ex. 4		Ex. 5	Ex. 6	
8	12	a	7	a	7	10	a	6
		b	8	b	7		b	6
1		c	7/				c	6
		/	1				d	6

¹Total is 100. You get 10 points for free